mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
中英/日英混合推理
如题,支持在中文/日语模式下夹杂英语内容
This commit is contained in:
parent
8d2db8254d
commit
177f3c6fc9
@ -165,6 +165,83 @@ dict_language={
|
||||
}
|
||||
|
||||
|
||||
def splite_en_inf(sentence, language):
|
||||
pattern = re.compile(r'[a-zA-Z. ]+')
|
||||
textlist = []
|
||||
langlist = []
|
||||
pos = 0
|
||||
for match in pattern.finditer(sentence):
|
||||
start, end = match.span()
|
||||
if start > pos:
|
||||
textlist.append(sentence[pos:start])
|
||||
langlist.append(language)
|
||||
textlist.append(sentence[start:end])
|
||||
langlist.append("en")
|
||||
pos = end
|
||||
if pos < len(sentence):
|
||||
textlist.append(sentence[pos:])
|
||||
langlist.append(language)
|
||||
|
||||
return textlist, langlist
|
||||
|
||||
|
||||
def clean_text_inf(text, language):
|
||||
phones, word2ph, norm_text = clean_text(text, language)
|
||||
phones = cleaned_text_to_sequence(phones)
|
||||
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def get_bert_inf(phones, word2ph, norm_text, language):
|
||||
if language == "zh":
|
||||
bert = get_bert_feature(norm_text, word2ph).to(device)
|
||||
else:
|
||||
bert = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float16 if is_half == True else torch.float32,
|
||||
).to(device)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
def nonen_clean_text_inf(text, language):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
phones_list = []
|
||||
word2ph_list = []
|
||||
norm_text_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(textlist[i], lang)
|
||||
phones_list.append(phones)
|
||||
if lang=="en" or "ja":
|
||||
pass
|
||||
else:
|
||||
word2ph_list.append(word2ph)
|
||||
norm_text_list.append(norm_text)
|
||||
print(word2ph_list)
|
||||
phones = sum(phones_list, [])
|
||||
word2ph = sum(word2ph_list, [])
|
||||
norm_text = ' '.join(norm_text_list)
|
||||
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def nonen_get_bert_inf(text, language):
|
||||
textlist, langlist = splite_en_inf(text, language)
|
||||
print(textlist)
|
||||
print(langlist)
|
||||
bert_list = []
|
||||
for i in range(len(textlist)):
|
||||
text = textlist[i]
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = clean_text_inf(text, lang)
|
||||
bert = get_bert_inf(phones, word2ph, norm_text, lang)
|
||||
bert_list.append(bert)
|
||||
bert = torch.cat(bert_list, dim=1)
|
||||
|
||||
return bert
|
||||
|
||||
|
||||
def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language):
|
||||
t0 = ttime()
|
||||
prompt_text = prompt_text.strip("\n")
|
||||
@ -194,27 +271,32 @@ def get_tts_wav(ref_wav_path, prompt_text, prompt_language, text, text_language)
|
||||
t1 = ttime()
|
||||
prompt_language = dict_language[prompt_language]
|
||||
text_language = dict_language[text_language]
|
||||
phones1, word2ph1, norm_text1 = clean_text(prompt_text, prompt_language)
|
||||
phones1 = cleaned_text_to_sequence(phones1)
|
||||
if prompt_language == "en":
|
||||
phones1, word2ph1, norm_text1 = clean_text_inf(prompt_text, prompt_language)
|
||||
else:
|
||||
phones1, word2ph1, norm_text1 = nonen_clean_text_inf(prompt_text, prompt_language)
|
||||
texts = text.split("\n")
|
||||
audio_opt = []
|
||||
for text in texts:
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if (len(text.strip()) == 0):
|
||||
continue
|
||||
phones2, word2ph2, norm_text2 = clean_text(text, text_language)
|
||||
phones2 = cleaned_text_to_sequence(phones2)
|
||||
if prompt_language == "zh":
|
||||
bert1 = get_bert_feature(norm_text1, word2ph1).to(device)
|
||||
|
||||
if text_language == "en":
|
||||
phones2, word2ph2, norm_text2 = clean_text_inf(text, text_language)
|
||||
else:
|
||||
bert1 = torch.zeros(
|
||||
(1024, len(phones1)),
|
||||
dtype=torch.float16 if is_half == True else torch.float32,
|
||||
).to(device)
|
||||
if text_language == "zh":
|
||||
bert2 = get_bert_feature(norm_text2, word2ph2).to(device)
|
||||
phones2, word2ph2, norm_text2 = nonen_clean_text_inf(text, text_language)
|
||||
|
||||
if prompt_language == "en":
|
||||
bert1 = get_bert_inf(phones1, word2ph1, norm_text1, prompt_language)
|
||||
else:
|
||||
bert2 = torch.zeros((1024, len(phones2))).to(bert1)
|
||||
bert1 = nonen_get_bert_inf(prompt_text, prompt_language)
|
||||
|
||||
if text_language == "en":
|
||||
bert2 = get_bert_inf(phones2, word2ph2, norm_text2, text_language)
|
||||
else:
|
||||
bert2 = nonen_get_bert_inf(text, text_language)
|
||||
|
||||
bert = torch.cat([bert1, bert2], 1)
|
||||
|
||||
all_phoneme_ids = torch.LongTensor(phones1 + phones2).to(device).unsqueeze(0)
|
||||
|
Loading…
x
Reference in New Issue
Block a user