feat:get ready for if node merge

This commit is contained in:
zpeng11 2025-08-21 00:34:56 -04:00
parent 403c5bf320
commit 16d30ce1e4
3 changed files with 282 additions and 63 deletions

View File

@ -6,7 +6,7 @@ from feature_extractor import cnhubert
from module.models_onnx import SynthesizerTrn, symbols_v1, symbols_v2
from torch import nn
from sv import SV
import onnx
cnhubert_base_path = "GPT_SoVITS/pretrained_models/chinese-hubert-base"
from transformers import HubertModel, HubertConfig
import json
@ -103,9 +103,20 @@ class T2SInitStep(nn.Module):
all_phoneme_ids = torch.cat([ref_seq, text_seq], 1)
bert = bert.unsqueeze(0)
prompt = prompt_semantic.unsqueeze(0)
return self.fsdc(self.encoder(all_phoneme_ids, bert), prompt)
[y, k, v, y_emb, x_example] = self.fsdc(self.encoder(all_phoneme_ids, bert), prompt)
fake_logits = torch.randn((1, 1025)) # Dummy logits for ONNX export
fake_samples = torch.randn((1, 1)) # Dummy samples for ONNX export
return y, k, v, y_emb, x_example, fake_logits, fake_samples
class T2SStageStep(nn.Module):
def __init__(self, stage_decoder):
super().__init__()
self.stage_decoder = stage_decoder
def forward(self, iy, ik, iv, iy_emb, ix_example):
[y, k, v, y_emb, logits, samples] = self.stage_decoder(iy, ik, iv, iy_emb, ix_example)
fake_x_example = torch.randn((1, 512)) # Dummy x_example for ONNX export
return y, k, v, y_emb, fake_x_example, logits, samples
class T2SModel(nn.Module):
def __init__(self, t2s_path, vits_model):
@ -131,12 +142,13 @@ class T2SModel(nn.Module):
early_stop_num = self.t2s_model.early_stop_num
# [1,N] [1,N] [N, 1024] [N, 1024] [1, 768, N]
y, k, v, y_emb, x_example = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
for idx in tqdm(range(1, 20)): # This is a fake one! do take this as reference
# [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
enco = self.stage_decoder(y, k, v, y_emb, x_example)
y, k, v, y_emb, logits, samples = enco
print(logits.shape, samples.shape)
if torch.argmax(logits, dim=-1)[0] == self.t2s_model.EOS or samples[0, 0] == self.t2s_model.EOS:
break
y[0, -1] = 0
@ -158,7 +170,7 @@ class T2SModel(nn.Module):
(ref_seq, text_seq, ref_bert, text_bert, ssl_content),
f"onnx/{project_name}/{project_name}_t2s_init_step.onnx",
input_names=["ref_text_phones", "input_text_phones", "ref_text_bert", "input_text_bert", "hubert_ssl_content"],
output_names=["y", "k", "v", "y_emb", "x_example"],
output_names=["y", "k", "v", "y_emb", "x_example", 'logits', 'samples'],
dynamic_axes={
"ref_text_phones": {1: "ref_length"},
"input_text_phones": {1: "text_length"},
@ -168,35 +180,22 @@ class T2SModel(nn.Module):
},
opset_version=16,
)
y, k, v, y_emb, x_example = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
# torch.onnx.export(
# self.first_stage_decoder,
# (x, prompts),
# f"onnx/{project_name}/{project_name}_t2s_fsdec.onnx",
# input_names=["x", "prompts"],
# output_names=["y", "k", "v", "y_emb", "x_example"],
# dynamic_axes={
# "x": {1: "x_length"},
# "prompts": {1: "prompts_length"},
# },
# verbose=False,
# opset_version=16,
# )
# y, k, v, y_emb, x_example = self.first_stage_decoder(x, prompts)
y, k, v, y_emb, x_example, fake_logits, fake_samples = self.init_step(ref_seq, text_seq, ref_bert, text_bert, ssl_content)
stage_step = T2SStageStep(self.stage_decoder)
torch.onnx.export(
self.stage_decoder,
stage_step,
(y, k, v, y_emb, x_example),
f"onnx/{project_name}/{project_name}_t2s_sdec.onnx",
input_names=["iy", "ik", "iv", "iy_emb", "ix_example"],
output_names=["y", "k", "v", "y_emb", "logits", "samples"],
output_names=["y", "k", "v", "y_emb","x_example", "logits", "samples"],
dynamic_axes={
"iy": {1: "iy_length"},
"ik": {1: "ik_length"},
"iv": {1: "iv_length"},
"iy_emb": {1: "iy_emb_length"},
"ix_example": {1: "ix_example_length"},
"x_example": {1: "x_example_length"}
},
verbose=False,
opset_version=16,
@ -303,6 +302,20 @@ class AudioPreprocess(nn.Module):
return ssl_content, spectrum, sv_emb
# def combineInitStepAndStageStep(init_step_onnx_path, stage_step_onnx_path):
# init_step_model = onnx.load(init_step_onnx_path)
# stage_step_model = onnx.load(stage_step_onnx_path)
# # Combine the models (this is a simplified example; actual combination logic may vary)
# combined_graph = helper.make_graph(
# nodes=init_step_model.graph.node + stage_step_model.graph.node,
# name="combined_graph",
# inputs=init_step_model.graph.input,
# outputs=stage_step_model.graph.output
# )
# combined_model = helper.make_model(combined_graph, producer_name='onnx-combiner')
# onnx.save(combined_model, f"onnx/{project_name}/{project_name}_combined.onnx")
def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
vits = VitsModel(vits_path, version=voice_model_version)
@ -366,33 +379,23 @@ def export(vits_path, gpt_path, project_name, voice_model_version="v2"):
)
ref_bert = torch.randn((ref_seq.shape[1], 1024)).float()
text_bert = torch.randn((text_seq.shape[1], 1024)).float()
ref_audio = torch.randn((1, 48000 * 5)).float()
# ref_audio = torch.tensor([load_audio("rec.wav", 48000)]).float()
ref_audio32k = torchaudio.functional.resample(ref_audio, 48000, 32000).float()
ref_audio32k = torch.randn((1, 32000 * 5)).float() - 0.5
try:
os.mkdir(f"onnx/{project_name}")
except:
pass
torch.onnx.export(preprocessor, (ref_audio32k,), f"onnx/{project_name}/{project_name}_audio_preprocess.onnx",
input_names=["audio32k"],
output_names=["hubert_ssl_output", "spectrum", "sv_emb"],
dynamic_axes={
"audio32k": {1: "sequence_length"},
"hubert_ssl_output": {2: "hubert_length"},
"spectrum": {2: "spectrum_length"}
})
os.makedirs(f"onnx/{project_name}", exist_ok=True)
[ssl_content, spectrum, sv_emb] = preprocessor(ref_audio32k)
gpt_sovits(ref_seq, text_seq, ref_bert, text_bert, ssl_content.float(), spectrum.float(), sv_emb.float())
# exit()
gpt_sovits.export(ref_seq, text_seq, ref_bert, text_bert, ssl_content.float(), spectrum.float(), sv_emb.float(), project_name)
if voice_model_version == "v1":
symbols = symbols_v1
else:
symbols = symbols_v2
torch.onnx.export(preprocessor, (ref_audio32k,), f"onnx/{project_name}/{project_name}_audio_preprocess.onnx",
input_names=["audio32k"],
output_names=["hubert_ssl_output", "spectrum", "sv_emb"],
dynamic_axes={
"audio32k": {1: "sequence_length"},
"hubert_ssl_output": {2: "hubert_length"},
"spectrum": {2: "spectrum_length"}
})
if __name__ == "__main__":
try:
@ -400,23 +403,25 @@ if __name__ == "__main__":
except:
pass
gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
exp_path = "v1_export"
version = "v1"
export(vits_path, gpt_path, exp_path, version)
gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
exp_path = "v2_export"
version = "v2"
export(vits_path, gpt_path, exp_path, version)
gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth"
exp_path = "v2pro_export"
version = "v2Pro"
export(vits_path, gpt_path, exp_path, version)
# gpt_path = "GPT_SoVITS/pretrained_models/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/s2G488k.pth"
# exp_path = "v1_export"
# version = "v1"
# export(vits_path, gpt_path, exp_path, version)
# gpt_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"
# exp_path = "v2_export"
# version = "v2"
# export(vits_path, gpt_path, exp_path, version)
# gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt"
# vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth"
# exp_path = "v2pro_export"
# version = "v2Pro"
# export(vits_path, gpt_path, exp_path, version)
gpt_path = "GPT_SoVITS/pretrained_models/s1v3.ckpt"
vits_path = "GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth"

View File

@ -7,7 +7,7 @@ import torch
from TTS_infer_pack.TextPreprocessor_onnx import TextPreprocessorOnnx
MODEL_PATH = "onnx/v1_export/v1"
MODEL_PATH = "onnx/v2proplus_export/v2proplus"
def audio_postprocess(
audios,
@ -56,7 +56,7 @@ def audio_preprocess(audio_path):
def preprocess_text(text:str):
preprocessor = TextPreprocessorOnnx("playground/bert")
[phones, bert_features, norm_text] = preprocessor.segment_and_extract_feature_for_text(text, 'all_zh', 'v1')
[phones, bert_features, norm_text] = preprocessor.segment_and_extract_feature_for_text(text, 'all_zh', 'v2')
phones = np.expand_dims(np.array(phones, dtype=np.int64), axis=0)
return phones, bert_features.T.astype(np.float32)
@ -76,7 +76,7 @@ def preprocess_text(text:str):
init_step = ort.InferenceSession(MODEL_PATH+"_export_t2s_init_step.onnx")
[y, k, v, y_emb, x_example] = init_step.run(None, {
[y, k, v, y_emb, x_example, fake_logits, fake_samples] = init_step.run(None, {
"input_text_phones": input_phones,
"input_text_bert": input_bert,
"ref_text_phones": ref_phones,
@ -96,7 +96,7 @@ sdec = ort.InferenceSession(MODEL_PATH+"_export_t2s_sdec.onnx")
for idx in tqdm(range(1, 1500)):
# [1, N] [N_layer, N, 1, 512] [N_layer, N, 1, 512] [1, N, 512] [1] [1, N, 512] [1, N]
[y, k, v, y_emb, logits, samples] = sdec.run(None, {
[y, k, v, y_emb, fake_x_example, logits, samples] = sdec.run(None, {
"iy": y,
"ik": k,
"iv": v,
@ -123,7 +123,7 @@ vtis = ort.InferenceSession(MODEL_PATH+"_export_vits.onnx")
"input_text_phones": input_phones,
"pred_semantic": pred_semantic,
"spectrum": spectrum.astype(np.float32),
# "sv_emb": sv_emb.astype(np.float32)
"sv_emb": sv_emb.astype(np.float32)
})
audio_postprocess([audio])

View File

@ -0,0 +1,214 @@
import torch
import torch.nn as nn
import onnx
import onnxruntime as ort
from onnx import helper, TensorProto
import numpy as np
import os
# Define file paths
PLAYGROUND_DIR = "playground"
MODEL_A_PATH = os.path.join(PLAYGROUND_DIR, "a.onnx")
MODEL_B_PATH = os.path.join(PLAYGROUND_DIR, "b.onnx")
MODEL_C_PATH = os.path.join(PLAYGROUND_DIR, "c.onnx")
# --- 1. Create two simple PyTorch modules ---
class ModelA(nn.Module):
"""This model adds 1 to the input."""
def forward(self, x):
return x + 1.0
class ModelB(nn.Module):
"""This model multiplies the input by 2."""
def forward(self, x):
return x * 2.0
def create_and_export_models():
"""Creates two nn.Modules and exports them to ONNX."""
print("Step 1: Creating and exporting PyTorch models A and B...")
os.makedirs(PLAYGROUND_DIR, exist_ok=True)
# Define a dummy input with a dynamic axis
batch_size = 1
sequence_length = 10 # This dimension will be dynamic
features = 4
dummy_input = torch.randn(batch_size, sequence_length, features)
# Export Model A
print(f"Exporting Model A to {MODEL_A_PATH}")
torch.onnx.export(
ModelA(),
dummy_input,
MODEL_A_PATH,
input_names=['inputA'],
output_names=['output'],
dynamic_axes={'inputA': {1: 'sequenceA'}, 'output': {1: 'sequence'}},
opset_version=11 # If node requires opset >= 11
)
# Export Model B
print(f"Exporting Model B to {MODEL_B_PATH}")
torch.onnx.export(
ModelB(),
dummy_input,
MODEL_B_PATH,
input_names=['inputB'],
output_names=['output'],
dynamic_axes={'inputB': {1: 'sequenceB'}, 'output': {1: 'sequence'}},
opset_version=11
)
print("Models A and B exported successfully.")
def combine_models_with_if():
"""
Reads two ONNX models and combines them into a third model
using an 'If' operator.
"""
print("\nStep 2: Combining models A and B into C with an 'If' node...")
# Load the two exported ONNX models
model_a = onnx.load(MODEL_A_PATH)
model_b = onnx.load(MODEL_B_PATH)
# The graphs for the 'then' and 'else' branches of the 'If' operator
then_graph = model_a.graph
then_graph.name = "then_branch_graph"
else_graph = model_b.graph
else_graph.name = "else_branch_graph"
# The data input for the main graph is defined here.
# We take it from one of the original models.
data_inputA = model_a.graph.input[0]
data_inputB = model_b.graph.input[0]
# For some onnxruntime versions, subgraphs should not have their own
# explicit 'input' list if the inputs are captured from the parent graph.
# We clear the input lists of the subgraphs to force implicit capture.
del then_graph.input[:]
del else_graph.input[:]
# The output names of the subgraphs must be the same.
# The 'If' node will have an output with this same name.
subgraph_output_name = model_a.graph.output[0].name
assert subgraph_output_name == model_b.graph.output[0].name, "Subgraph output names must match"
# Define the inputs for the main graph
# 1. The boolean condition to select the branch
cond_input = helper.make_tensor_value_info('if_use_a', TensorProto.BOOL, [])
# The main graph's output is the output from the 'If' node.
# We can use the ValueInfoProto from one of the subgraphs directly.
main_output = model_a.graph.output[0]
# Create the 'If' node
if_node = helper.make_node(
'If',
inputs=['if_use_a'],
outputs=[subgraph_output_name], # This name MUST match the subgraph's output name
then_branch=then_graph,
else_branch=else_graph
)
# Create the main graph containing the 'If' node. Its inputs are the condition
# AND the data that the subgraphs will capture.
main_graph = helper.make_graph(
nodes=[if_node],
name='if_main_graph',
inputs=[cond_input, data_inputA, data_inputB],
outputs=[main_output]
)
# Create the final combined model, specifying the opset and IR version
opset_version = 16
final_model = helper.make_model(main_graph,
producer_name='onnx-if-combiner',
ir_version=9, # For compatibility with older onnxruntime
opset_imports=[helper.make_opsetid("", opset_version)])
# Check the model for correctness
onnx.checker.check_model(final_model)
# Save the combined model
onnx.save(final_model, MODEL_C_PATH)
print(f"Combined model C saved to {MODEL_C_PATH}")
def verify_combined_model():
"""
Loads the combined ONNX model and runs inference to verify
that the 'If' branching and dynamic shapes work correctly.
"""
print("\nStep 3: Verifying the combined model C...")
sess = ort.InferenceSession(MODEL_C_PATH)
# --- Test Case 1: Select Model A (if_use_a = True) ---
print("\n--- Verifying 'then' branch (Model A) ---")
use_a = np.array(True)
# Use a different sequence length to test dynamic axis
test_seq_len_a = 15
test_seq_len_b = 10
input_data_a = np.random.randn(1, test_seq_len_a, 4).astype(np.float32)
input_data_b = np.random.randn(1, test_seq_len_a, 4).astype(np.float32)
# Run inference
outputs = sess.run(
None,
{'if_use_a': use_a, 'inputA': input_data_a, 'inputB': input_data_b}
)
result_a = outputs[0]
# Calculate expected output from Model A
expected_a = input_data_a + 1.0
# Verify the output and shape
np.testing.assert_allclose(result_a, expected_a, rtol=1e-5, atol=1e-5)
assert result_a.shape[1] == test_seq_len_a, "Dynamic shape failed for branch A"
print("✅ Branch A (if_use_a=True) works correctly.")
print(f"✅ Dynamic shape test passed (input seq_len={test_seq_len_a}, output seq_len={result_a.shape[1]})")
# --- Test Case 2: Select Model B (if_use_a = False) ---
print("\n--- Verifying 'else' branch (Model B) ---")
use_b = np.array(False)
# Use another sequence length
test_seq_len_a = 8
test_seq_len_b = 5
input_data_a = np.random.randn(1, test_seq_len_a, 4).astype(np.float32)
input_data_b = np.random.randn(1, test_seq_len_b, 4).astype(np.float32)
# Run inference
outputs = sess.run(
None,
{'if_use_a': use_b, 'inputA': input_data_a, 'inputB': input_data_b}
)
result_b = outputs[0]
# Calculate expected output from Model B
expected_b = input_data_b * 2.0
# Verify the output and shape
np.testing.assert_allclose(result_b, expected_b, rtol=1e-5, atol=1e-5)
assert result_b.shape[1] == test_seq_len_b, "Dynamic shape failed for branch B"
print("✅ Branch B (if_use_a=False) works correctly.")
print(f"✅ Dynamic shape test passed (input seq_len={test_seq_len_b}, output seq_len={result_b.shape[1]})")
def cleanup():
"""Removes the intermediate ONNX files."""
print("\nCleaning up intermediate files...")
for path in [MODEL_A_PATH, MODEL_B_PATH]:
if os.path.exists(path):
os.remove(path)
print(f"Removed {path}")
def main():
"""Main function to run the entire process."""
try:
create_and_export_models()
combine_models_with_if()
verify_combined_model()
finally:
cleanup()
print("\nAll steps completed successfully!")
if __name__ == "__main__":
main()