mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-09-29 00:30:15 +08:00
only_tts
This commit is contained in:
parent
af9bb934b2
commit
133f757e87
188
only_tts/README.md
Normal file
188
only_tts/README.md
Normal file
@ -0,0 +1,188 @@
|
||||
# GPT-SoVITS only_tts
|
||||
|
||||
한국어/영어 전용 GPT-SoVITS TTS 라이브러리입니다. API 서버 없이 단순한 함수 호출만으로 TTS 기능을 사용할 수 있습니다.
|
||||
|
||||
## 지원 기능
|
||||
|
||||
- **언어**: 한국어, 영어
|
||||
- **모델**: V4, V2Pro, V2ProPlus
|
||||
- **출력**: 고품질 음성 합성
|
||||
- **의존성**: 최소한의 패키지 (20개)
|
||||
|
||||
## 설치
|
||||
|
||||
### 1. 의존성 설치
|
||||
|
||||
```bash
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
|
||||
### 2. 모델 다운로드
|
||||
|
||||
```bash
|
||||
# 모든 모델 다운로드
|
||||
python download_models.py --all
|
||||
|
||||
# V4 모델만 다운로드
|
||||
python download_models.py --v4
|
||||
|
||||
# V2Pro 모델만 다운로드
|
||||
python download_models.py --v2pro
|
||||
|
||||
# 기본 모델만 다운로드 (HuBERT, RoBERTa)
|
||||
python download_models.py --base-models
|
||||
|
||||
# 사용 가능한 모델 정보 확인
|
||||
python download_models.py --info
|
||||
```
|
||||
|
||||
## 사용법
|
||||
|
||||
### 기본 사용 예시
|
||||
|
||||
```python
|
||||
from tts_simple import TTSEngine
|
||||
|
||||
# TTS 엔진 초기화
|
||||
tts = TTSEngine(model="v4", device="cuda")
|
||||
|
||||
# 음성 생성
|
||||
audio_data = tts.generate_speech(
|
||||
text="안녕하세요, 테스트입니다.",
|
||||
text_lang="ko",
|
||||
prompt_text="안녕",
|
||||
prompt_lang="ko",
|
||||
ref_audio_path="reference.wav"
|
||||
)
|
||||
|
||||
# 파일로 저장
|
||||
tts.save_audio(audio_data, "output.wav")
|
||||
```
|
||||
|
||||
### 영어 예시
|
||||
|
||||
```python
|
||||
# 영어 TTS
|
||||
audio_data = tts.generate_speech(
|
||||
text="Hello, this is a test.",
|
||||
text_lang="en",
|
||||
prompt_text="Hello",
|
||||
prompt_lang="en",
|
||||
ref_audio_path="reference_en.wav"
|
||||
)
|
||||
|
||||
tts.save_audio(audio_data, "output_en.wav")
|
||||
```
|
||||
|
||||
### 고급 설정
|
||||
|
||||
```python
|
||||
# 더 많은 옵션 사용
|
||||
audio_data = tts.generate_speech(
|
||||
text="긴 텍스트를 여러 부분으로 나누어 처리합니다.",
|
||||
text_lang="ko",
|
||||
prompt_text="긴 텍스트",
|
||||
prompt_lang="ko",
|
||||
ref_audio_path="reference.wav",
|
||||
top_k=5,
|
||||
top_p=1.0,
|
||||
temperature=1.0,
|
||||
speed_factor=1.0
|
||||
)
|
||||
```
|
||||
|
||||
## API 참조
|
||||
|
||||
### TTSEngine
|
||||
|
||||
#### `__init__(model, device, is_half)`
|
||||
|
||||
- `model`: 사용할 모델 ("v4", "v2pro", "v2proplus")
|
||||
- `device`: 디바이스 ("cuda", "cpu")
|
||||
- `is_half`: 반정밀도 사용 여부 (기본값: False)
|
||||
|
||||
#### `generate_speech(text, text_lang, prompt_text, prompt_lang, ref_audio_path, **kwargs)`
|
||||
|
||||
음성을 생성합니다.
|
||||
|
||||
**필수 파라미터:**
|
||||
- `text`: 합성할 텍스트
|
||||
- `text_lang`: 텍스트 언어 ("ko", "en")
|
||||
- `prompt_text`: 참조 텍스트
|
||||
- `prompt_lang`: 참조 텍스트 언어
|
||||
- `ref_audio_path`: 참조 오디오 파일 경로
|
||||
|
||||
**선택적 파라미터:**
|
||||
- `top_k`: Top-K 샘플링 (기본값: 5)
|
||||
- `top_p`: Top-P 샘플링 (기본값: 1.0)
|
||||
- `temperature`: 샘플링 온도 (기본값: 1.0)
|
||||
- `speed_factor`: 속도 조절 (기본값: 1.0)
|
||||
|
||||
#### `save_audio(audio_data, output_path)`
|
||||
|
||||
생성된 오디오를 파일로 저장합니다.
|
||||
|
||||
## 모델 정보
|
||||
|
||||
### 기본 모델 (필수)
|
||||
- **chinese-hubert-base**: 다국어 음성 특징 추출 모델
|
||||
- **chinese-roberta-wwm-ext-large**: 다국어 텍스트 특징 추출 모델
|
||||
|
||||
### V4 모델
|
||||
- **s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt**: V4 GPT 모델
|
||||
- **s2Gv4.pth**: V4 SoVITS 모델
|
||||
- **vocoder.pth**: V4 보코더 모델
|
||||
|
||||
### V2Pro 모델
|
||||
- **s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt**: V2Pro GPT 모델
|
||||
- **s2Gv2Pro.pth**: V2Pro SoVITS 모델
|
||||
- **s2Gv2ProPlus.pth**: V2ProPlus SoVITS 모델
|
||||
- **pretrained_eres2netv2w24s4ep4.ckpt**: 화자 검증 모델
|
||||
|
||||
## 디렉토리 구조
|
||||
|
||||
```
|
||||
only_tts/
|
||||
├── README.md
|
||||
├── requirements.txt
|
||||
├── download_models.py
|
||||
├── tts_simple.py
|
||||
├── config_examples.py
|
||||
├── configs/
|
||||
├── pretrained_models/ # 다운로드된 모델들
|
||||
│ ├── chinese-hubert-base/
|
||||
│ ├── chinese-roberta-wwm-ext-large/
|
||||
│ ├── gsv-v4-pretrained/
|
||||
│ └── v2Pro/
|
||||
└── src/
|
||||
├── TTS_infer_pack/
|
||||
├── text/
|
||||
├── module/
|
||||
├── feature_extractor/
|
||||
└── AR/
|
||||
```
|
||||
|
||||
## 주의사항
|
||||
|
||||
1. **모델 이름**: "chinese"가 포함된 모델명이지만, 실제로는 다국어 모델입니다.
|
||||
2. **참조 오디오**: 고품질의 3-10초 길이 참조 오디오를 사용하세요.
|
||||
3. **GPU 메모리**: CUDA 사용 시 충분한 GPU 메모리가 필요합니다.
|
||||
4. **언어 혼합**: 한 문장에 한국어와 영어를 혼합해서 사용할 수 있습니다.
|
||||
|
||||
## 문제 해결
|
||||
|
||||
### 일반적인 오류
|
||||
|
||||
1. **모델을 찾을 수 없음**: `python download_models.py --all` 실행
|
||||
2. **CUDA 메모리 부족**: `device="cpu"` 사용 또는 `is_half=True` 설정
|
||||
3. **참조 오디오 오류**: 3-10초 길이의 깔끔한 오디오 사용
|
||||
|
||||
### 성능 최적화
|
||||
|
||||
- GPU 사용: `device="cuda"`
|
||||
- 반정밀도: `is_half=True` (GPU에서만)
|
||||
- 배치 처리: 긴 텍스트는 자동으로 분할 처리됨
|
||||
|
||||
## 라이선스
|
||||
|
||||
GPT-SoVITS 프로젝트의 라이선스를 따릅니다.
|
||||
123
only_tts/config_examples.py
Normal file
123
only_tts/config_examples.py
Normal file
@ -0,0 +1,123 @@
|
||||
# TTS Configuration for V4 and V2Pro Models Only
|
||||
# GPT-SoVITS V4/V2Pro 모델 전용 설정 예제
|
||||
|
||||
"""
|
||||
V4 릴리스 노트:
|
||||
- V3에서 발생하는 비정수 배율 업샘플링으로 인한 금속성 잡음 문제 수정
|
||||
- 기본적으로 48kHz 오디오 출력 (V3는 24kHz)
|
||||
- V3의 직접적인 대체 버전으로 권장
|
||||
|
||||
V2Pro 릴리스 노트:
|
||||
- V2보다 약간 높은 VRAM 사용량이지만 V4보다 우수한 성능
|
||||
- V2 수준의 하드웨어 비용과 속도 유지
|
||||
- 평균 음질이 낮은 학습 데이터셋에서 V3/V4보다 좋은 결과
|
||||
"""
|
||||
|
||||
# V4 모델 설정 (권장)
|
||||
V4_CONFIG = {
|
||||
"device": "cuda",
|
||||
"is_half": True,
|
||||
"version": "v4",
|
||||
"t2s_weights_path": "pretrained_models/gsv-v4-pretrained/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"vits_weights_path": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||||
"vocoder_path": "pretrained_models/gsv-v4-pretrained/vocoder.pth",
|
||||
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
|
||||
}
|
||||
|
||||
# V2Pro 모델 설정
|
||||
V2PRO_CONFIG = {
|
||||
"device": "cuda",
|
||||
"is_half": True,
|
||||
"version": "v2Pro",
|
||||
"t2s_weights_path": "pretrained_models/v2Pro/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
"vits_weights_path": "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
||||
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
|
||||
"sv_model_path": "pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
}
|
||||
|
||||
# V2ProPlus 모델 설정 (V2Pro 향상 버전)
|
||||
V2PROPLUS_CONFIG = {
|
||||
"device": "cuda",
|
||||
"is_half": True,
|
||||
"version": "v2ProPlus",
|
||||
"t2s_weights_path": "pretrained_models/v2Pro/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
"vits_weights_path": "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
||||
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
|
||||
"sv_model_path": "pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
}
|
||||
|
||||
# CPU 전용 V4 설정 (GPU가 없는 환경용)
|
||||
V4_CPU_CONFIG = {
|
||||
"device": "cpu",
|
||||
"is_half": False, # CPU에서는 half precision 사용 불가
|
||||
"version": "v4",
|
||||
"t2s_weights_path": "pretrained_models/s1v3.ckpt",
|
||||
"vits_weights_path": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||||
"vocoder_path": "pretrained_models/gsv-v4-pretrained/vocoder.pth",
|
||||
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
|
||||
}
|
||||
|
||||
# CPU 전용 V2Pro 설정
|
||||
V2PRO_CPU_CONFIG = {
|
||||
"device": "cpu",
|
||||
"is_half": False,
|
||||
"version": "v2Pro",
|
||||
"t2s_weights_path": "pretrained_models/s1v3.ckpt",
|
||||
"vits_weights_path": "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
||||
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
|
||||
"sv_model_path": "pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
}
|
||||
|
||||
# 필요한 모델 파일 다운로드 경로
|
||||
REQUIRED_MODEL_FILES = {
|
||||
"common": [
|
||||
"pretrained_models/s1v3.ckpt",
|
||||
"pretrained_models/chinese-roberta-wwm-ext-large/",
|
||||
"pretrained_models/chinese-hubert-base/",
|
||||
],
|
||||
"v4": [
|
||||
"pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||||
"pretrained_models/gsv-v4-pretrained/vocoder.pth",
|
||||
],
|
||||
"v2pro": [
|
||||
"pretrained_models/v2Pro/s2Gv2Pro.pth",
|
||||
"pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
],
|
||||
"v2proplus": [
|
||||
"pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
||||
"pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
]
|
||||
}
|
||||
|
||||
# 모델 선택 가이드
|
||||
MODEL_SELECTION_GUIDE = """
|
||||
모델 선택 가이드:
|
||||
|
||||
1. V4 모델:
|
||||
- 48kHz 고품질 오디오 출력
|
||||
- 금속성 잡음 문제 해결
|
||||
- 일반적인 용도에 권장
|
||||
- 명령어: python tts_api.py -m v4
|
||||
|
||||
2. V2Pro 모델:
|
||||
- V4보다 우수한 성능
|
||||
- V2 수준의 하드웨어 요구사항
|
||||
- 평균 음질이 낮은 데이터셋에서 우수
|
||||
- 명령어: python tts_api.py -m v2pro
|
||||
|
||||
3. V2ProPlus 모델:
|
||||
- V2Pro의 향상된 버전
|
||||
- 약간 높은 VRAM 사용량
|
||||
- 최고 품질이 필요한 경우
|
||||
- 명령어: python tts_api.py -m v2proplus
|
||||
|
||||
CPU 사용시: --cpu 옵션 추가
|
||||
예: python tts_api.py -m v4 --cpu
|
||||
"""
|
||||
|
||||
print(MODEL_SELECTION_GUIDE)
|
||||
27
only_tts/configs/tts_infer.yaml
Normal file
27
only_tts/configs/tts_infer.yaml
Normal file
@ -0,0 +1,27 @@
|
||||
# Only V4 and V2Pro series configurations are supported
|
||||
v4:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt
|
||||
version: v4
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/gsv-v4-pretrained/s2Gv4.pth
|
||||
|
||||
v2Pro:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/v2Pro/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
|
||||
version: v2Pro
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/v2Pro/s2Gv2Pro.pth
|
||||
|
||||
v2ProPlus:
|
||||
bert_base_path: GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large
|
||||
cnhuhbert_base_path: GPT_SoVITS/pretrained_models/chinese-hubert-base
|
||||
device: cpu
|
||||
is_half: false
|
||||
t2s_weights_path: GPT_SoVITS/pretrained_models/v2Pro/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt
|
||||
version: v2ProPlus
|
||||
vits_weights_path: GPT_SoVITS/pretrained_models/v2Pro/s2Gv2ProPlus.pth
|
||||
298
only_tts/download_models.py
Normal file
298
only_tts/download_models.py
Normal file
@ -0,0 +1,298 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
GPT-SoVITS only_tts 모델 다운로드 및 설치 스크립트
|
||||
|
||||
V4 및 V2Pro 시리즈 모델들을 자동으로 다운로드하고 설치합니다.
|
||||
|
||||
Usage:
|
||||
python download_models.py --all
|
||||
python download_models.py --v4
|
||||
python download_models.py --v2pro
|
||||
python download_models.py --base-models
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import argparse
|
||||
import subprocess
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
import requests
|
||||
from tqdm import tqdm
|
||||
import zipfile
|
||||
import hashlib
|
||||
|
||||
# 현재 스크립트 위치 기준으로 pretrained_models 경로 설정
|
||||
SCRIPT_DIR = Path(__file__).parent
|
||||
PRETRAINED_DIR = SCRIPT_DIR / "pretrained_models"
|
||||
|
||||
# 모델 다운로드 정보
|
||||
MODEL_CONFIGS = {
|
||||
"base_models": {
|
||||
"chinese-hubert-base": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-hubert-base.zip",
|
||||
"path": PRETRAINED_DIR / "chinese-hubert-base",
|
||||
"description": "Multi-language HuBERT base model (한국어/영어 필수 - 다국어 음성 특징 추출)"
|
||||
},
|
||||
"chinese-roberta-wwm-ext-large": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/chinese-roberta-wwm-ext-large.zip",
|
||||
"path": PRETRAINED_DIR / "chinese-roberta-wwm-ext-large",
|
||||
"description": "Multi-language RoBERTa model (한국어/영어 필수 - 다국어 텍스트 특징 추출)"
|
||||
}
|
||||
},
|
||||
"v4_models": {
|
||||
"s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/gsv-v4-pretrained/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"path": PRETRAINED_DIR / "gsv-v4-pretrained" / "s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"description": "V4 GPT model checkpoint"
|
||||
},
|
||||
"s2Gv4.pth": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/gsv-v4-pretrained/s2Gv4.pth",
|
||||
"path": PRETRAINED_DIR / "gsv-v4-pretrained" / "s2Gv4.pth",
|
||||
"description": "V4 SoVITS model"
|
||||
},
|
||||
"vocoder.pth": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/gsv-v4-pretrained/vocoder.pth",
|
||||
"path": PRETRAINED_DIR / "gsv-v4-pretrained" / "vocoder.pth",
|
||||
"description": "V4 Vocoder model"
|
||||
}
|
||||
},
|
||||
"v2pro_models": {
|
||||
"s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/v2Pro/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
"path": PRETRAINED_DIR / "v2Pro" / "s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
"description": "V2Pro GPT model checkpoint"
|
||||
},
|
||||
"s2Gv2Pro.pth": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/v2Pro/s2Gv2Pro.pth",
|
||||
"path": PRETRAINED_DIR / "v2Pro" / "s2Gv2Pro.pth",
|
||||
"description": "V2Pro SoVITS model"
|
||||
},
|
||||
"s2Gv2ProPlus.pth": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/v2Pro/s2Gv2ProPlus.pth",
|
||||
"path": PRETRAINED_DIR / "v2Pro" / "s2Gv2ProPlus.pth",
|
||||
"description": "V2ProPlus SoVITS model"
|
||||
},
|
||||
"pretrained_eres2netv2w24s4ep4.ckpt": {
|
||||
"url": "https://huggingface.co/lj1995/GPT-SoVITS/resolve/main/sv/pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
"path": PRETRAINED_DIR / "sv" / "pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
"description": "Speaker Verification model (V2Pro 필수)"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
def download_file(url: str, filepath: Path, description: str = ""):
|
||||
"""파일 다운로드 (진행률 표시)"""
|
||||
try:
|
||||
# HEAD 요청으로 파일 크기 확인
|
||||
response = requests.head(url, allow_redirects=True)
|
||||
total_size = int(response.headers.get('content-length', 0))
|
||||
|
||||
# 디렉토리 생성
|
||||
filepath.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# 파일 다운로드
|
||||
response = requests.get(url, stream=True)
|
||||
response.raise_for_status()
|
||||
|
||||
with open(filepath, 'wb') as f:
|
||||
with tqdm(
|
||||
desc=f"Downloading {description or filepath.name}",
|
||||
total=total_size,
|
||||
unit='B',
|
||||
unit_scale=True,
|
||||
unit_divisor=1024,
|
||||
) as pbar:
|
||||
for chunk in response.iter_content(chunk_size=8192):
|
||||
if chunk:
|
||||
f.write(chunk)
|
||||
pbar.update(len(chunk))
|
||||
|
||||
print(f"✅ Downloaded: {filepath}")
|
||||
return True
|
||||
|
||||
except Exception as e:
|
||||
print(f"❌ Failed to download {url}: {e}")
|
||||
return False
|
||||
|
||||
def check_file_exists(filepath: Path) -> bool:
|
||||
"""파일 존재 여부 확인"""
|
||||
return filepath.exists() and filepath.stat().st_size > 0
|
||||
|
||||
def download_models(model_groups: list, force: bool = False):
|
||||
"""모델 다운로드"""
|
||||
print(f"🚀 GPT-SoVITS only_tts 모델 다운로드 시작")
|
||||
print(f"📁 설치 경로: {PRETRAINED_DIR.absolute()}")
|
||||
|
||||
total_files = 0
|
||||
downloaded_files = 0
|
||||
skipped_files = 0
|
||||
|
||||
for group in model_groups:
|
||||
if group not in MODEL_CONFIGS:
|
||||
print(f"⚠️ 알 수 없는 모델 그룹: {group}")
|
||||
continue
|
||||
|
||||
print(f"\n📦 {group.replace('_', ' ').title()} 다운로드 중...")
|
||||
models = MODEL_CONFIGS[group]
|
||||
|
||||
for model_name, model_info in models.items():
|
||||
total_files += 1
|
||||
filepath = model_info["path"]
|
||||
|
||||
# 파일이 이미 존재하고 force가 아닌 경우 스킵
|
||||
if check_file_exists(filepath) and not force:
|
||||
print(f"⏭️ 이미 존재함: {filepath.name}")
|
||||
skipped_files += 1
|
||||
continue
|
||||
|
||||
# 다운로드 시도
|
||||
if download_file(model_info["url"], filepath, model_info["description"]):
|
||||
downloaded_files += 1
|
||||
else:
|
||||
print(f"❌ 다운로드 실패: {model_name}")
|
||||
|
||||
# 결과 요약
|
||||
print(f"\n📊 다운로드 완료!")
|
||||
print(f" 총 파일: {total_files}")
|
||||
print(f" 다운로드: {downloaded_files}")
|
||||
print(f" 스킵: {skipped_files}")
|
||||
|
||||
if downloaded_files > 0:
|
||||
print(f"\n✅ 새로 다운로드된 파일들이 {PRETRAINED_DIR} 에 저장되었습니다.")
|
||||
|
||||
def install_git_lfs():
|
||||
"""Git LFS 설치 확인 및 설치"""
|
||||
try:
|
||||
subprocess.run(["git", "lfs", "--version"], check=True, capture_output=True)
|
||||
print("✅ Git LFS가 이미 설치되어 있습니다.")
|
||||
return True
|
||||
except (subprocess.CalledProcessError, FileNotFoundError):
|
||||
print("⚠️ Git LFS가 설치되어 있지 않습니다.")
|
||||
|
||||
# 자동 설치 시도 (Linux/Mac)
|
||||
if sys.platform != "win32":
|
||||
try:
|
||||
if shutil.which("apt-get"): # Ubuntu/Debian
|
||||
subprocess.run(["sudo", "apt-get", "install", "-y", "git-lfs"], check=True)
|
||||
elif shutil.which("brew"): # macOS
|
||||
subprocess.run(["brew", "install", "git-lfs"], check=True)
|
||||
elif shutil.which("yum"): # CentOS/RHEL
|
||||
subprocess.run(["sudo", "yum", "install", "-y", "git-lfs"], check=True)
|
||||
|
||||
subprocess.run(["git", "lfs", "install"], check=True)
|
||||
print("✅ Git LFS 설치 완료!")
|
||||
return True
|
||||
except subprocess.CalledProcessError:
|
||||
pass
|
||||
|
||||
print("❌ Git LFS를 수동으로 설치해주세요: https://git-lfs.github.io/")
|
||||
return False
|
||||
|
||||
def check_dependencies():
|
||||
"""의존성 확인"""
|
||||
print("🔍 의존성 확인 중...")
|
||||
|
||||
# Python 패키지 확인
|
||||
required_packages = ["requests", "tqdm"]
|
||||
missing_packages = []
|
||||
|
||||
for package in required_packages:
|
||||
try:
|
||||
__import__(package)
|
||||
except ImportError:
|
||||
missing_packages.append(package)
|
||||
|
||||
if missing_packages:
|
||||
print(f"⚠️ 필요한 패키지가 설치되어 있지 않습니다: {', '.join(missing_packages)}")
|
||||
print(f" 다음 명령어로 설치하세요: pip install {' '.join(missing_packages)}")
|
||||
return False
|
||||
|
||||
print("✅ 의존성 확인 완료!")
|
||||
return True
|
||||
|
||||
def show_model_info():
|
||||
"""사용 가능한 모델 정보 표시"""
|
||||
print("📋 사용 가능한 모델들:")
|
||||
print()
|
||||
|
||||
for group_name, models in MODEL_CONFIGS.items():
|
||||
print(f"🔸 {group_name.replace('_', ' ').title()}:")
|
||||
for model_name, model_info in models.items():
|
||||
status = "✅" if check_file_exists(model_info["path"]) else "❌"
|
||||
print(f" {status} {model_name}")
|
||||
print(f" 📝 {model_info['description']}")
|
||||
print(f" 📁 {model_info['path']}")
|
||||
print()
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser(
|
||||
description="GPT-SoVITS only_tts 모델 다운로드 및 설치",
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""
|
||||
사용 예시:
|
||||
python download_models.py --all # 모든 모델 다운로드
|
||||
python download_models.py --v4 # V4 모델만 다운로드
|
||||
python download_models.py --v2pro # V2Pro 모델만 다운로드
|
||||
python download_models.py --base-models # 기본 모델만 다운로드
|
||||
python download_models.py --info # 모델 정보 표시
|
||||
"""
|
||||
)
|
||||
|
||||
parser.add_argument("--all", action="store_true", help="모든 모델 다운로드")
|
||||
parser.add_argument("--v4", action="store_true", help="V4 모델 다운로드")
|
||||
parser.add_argument("--v2pro", action="store_true", help="V2Pro 모델 다운로드")
|
||||
parser.add_argument("--base-models", action="store_true", help="기본 모델들 다운로드")
|
||||
parser.add_argument("--force", action="store_true", help="기존 파일 덮어쓰기")
|
||||
parser.add_argument("--info", action="store_true", help="모델 정보 표시")
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# 정보 표시
|
||||
if args.info:
|
||||
show_model_info()
|
||||
return
|
||||
|
||||
# 의존성 확인
|
||||
if not check_dependencies():
|
||||
sys.exit(1)
|
||||
|
||||
# 다운로드할 모델 그룹 결정
|
||||
model_groups = []
|
||||
|
||||
if args.all:
|
||||
model_groups = ["base_models", "v4_models", "v2pro_models"]
|
||||
else:
|
||||
if args.base_models:
|
||||
model_groups.append("base_models")
|
||||
if args.v4:
|
||||
model_groups.append("base_models") # V4는 기본 모델 필요
|
||||
model_groups.append("v4_models")
|
||||
if args.v2pro:
|
||||
model_groups.append("base_models") # V2Pro도 기본 모델 필요
|
||||
model_groups.append("v2pro_models")
|
||||
|
||||
# 아무 옵션도 선택하지 않은 경우
|
||||
if not model_groups:
|
||||
print("❓ 다운로드할 모델을 선택해주세요.")
|
||||
print(" --help 옵션으로 사용법을 확인하세요.")
|
||||
print()
|
||||
show_model_info()
|
||||
return
|
||||
|
||||
# 중복 제거
|
||||
model_groups = list(dict.fromkeys(model_groups))
|
||||
|
||||
# 모델 다운로드
|
||||
download_models(model_groups, args.force)
|
||||
|
||||
# 설치 완료 메시지
|
||||
print(f"\n🎉 모델 설치가 완료되었습니다!")
|
||||
print(f" 이제 tts_simple.py를 사용하여 TTS를 실행할 수 있습니다.")
|
||||
print()
|
||||
print("📖 사용 예시:")
|
||||
print(" from tts_simple import TTSEngine")
|
||||
print(" tts = TTSEngine(model='v4', device='cuda')")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
30
only_tts/requirements.txt
Normal file
30
only_tts/requirements.txt
Normal file
@ -0,0 +1,30 @@
|
||||
# TTS Only - Minimal Requirements (Korean/English only)
|
||||
# Core TTS functionality for GPT-SoVITS V4/V2Pro
|
||||
|
||||
# Core ML frameworks (relaxed versions for compatibility)
|
||||
torch>=2.0.0,<3.0.0
|
||||
torchaudio>=2.0.0,<3.0.0
|
||||
numpy>=1.24.0 # Compatible with both numpy 1.x and 2.x
|
||||
|
||||
# Audio processing (core)
|
||||
librosa>=0.10.0,<0.11.0
|
||||
soundfile>=0.12.0
|
||||
numba>=0.56.0
|
||||
|
||||
# NLP and text processing (expanded compatibility)
|
||||
transformers>=4.43.0,<5.0.0 # Support newer versions
|
||||
tokenizers>=0.13.0,<1.0.0
|
||||
|
||||
# Language-specific text processing
|
||||
g2p_en>=2.1.0 # English phoneme conversion
|
||||
g2pk2>=2.0.0 # Korean phoneme conversion
|
||||
ko_pron>=1.3.0 # Korean pronunciation
|
||||
|
||||
# Utility libraries
|
||||
pyyaml>=5.4.0 # Configuration files
|
||||
tqdm>=4.60.0 # Progress bars
|
||||
psutil>=5.8.0 # System monitoring
|
||||
|
||||
# Additional dependencies for TTS model
|
||||
ffmpeg-python>=0.2.0 # Audio processing
|
||||
requests>=2.25.0 # Model downloading
|
||||
30
only_tts/requirements_ko_en.py
Normal file
30
only_tts/requirements_ko_en.py
Normal file
@ -0,0 +1,30 @@
|
||||
# TTS Only - Minimal Requirements (Korean/English only)
|
||||
# Core TTS functionality for GPT-SoVITS V4/V2Pro
|
||||
|
||||
# Core ML frameworks (relaxed versions for compatibility)
|
||||
torch>=2.0.0,<3.0.0
|
||||
torchaudio>=2.0.0,<3.0.0
|
||||
numpy>=1.24.0 # Compatible with both numpy 1.x and 2.x
|
||||
|
||||
# Audio processing (core)
|
||||
librosa>=0.10.0,<0.11.0
|
||||
soundfile>=0.12.0
|
||||
numba>=0.56.0
|
||||
|
||||
# NLP and text processing (expanded compatibility)
|
||||
transformers>=4.43.0,<5.0.0 # Support newer versions
|
||||
tokenizers>=0.13.0,<1.0.0
|
||||
|
||||
# Language-specific text processing
|
||||
g2p_en>=2.1.0 # English phoneme conversion
|
||||
g2pk2>=2.0.0 # Korean phoneme conversion
|
||||
ko_pron>=1.3.0 # Korean pronunciation
|
||||
|
||||
# Utility libraries
|
||||
pyyaml>=5.4.0 # Configuration files
|
||||
tqdm>=4.60.0 # Progress bars
|
||||
psutil>=5.8.0 # System monitoring
|
||||
|
||||
# Additional dependencies for TTS model
|
||||
ffmpeg-python>=0.2.0 # Audio processing
|
||||
requests>=2.25.0 # Model downloading
|
||||
30
only_tts/requirements_ko_en.txt
Normal file
30
only_tts/requirements_ko_en.txt
Normal file
@ -0,0 +1,30 @@
|
||||
# TTS Only - Minimal Requirements (Korean/English only)
|
||||
# Core TTS functionality for GPT-SoVITS V4/V2Pro
|
||||
|
||||
# Core ML frameworks (relaxed versions for compatibility)
|
||||
torch>=2.0.0,<3.0.0
|
||||
torchaudio>=2.0.0,<3.0.0
|
||||
numpy>=1.24.0 # Compatible with both numpy 1.x and 2.x
|
||||
|
||||
# Audio processing (core)
|
||||
librosa>=0.10.0,<0.11.0
|
||||
soundfile>=0.12.0
|
||||
numba>=0.56.0
|
||||
|
||||
# NLP and text processing (expanded compatibility)
|
||||
transformers>=4.43.0,<5.0.0 # Support newer versions
|
||||
tokenizers>=0.13.0,<1.0.0
|
||||
|
||||
# Language-specific text processing
|
||||
g2p_en>=2.1.0 # English phoneme conversion
|
||||
g2pk2>=2.0.0 # Korean phoneme conversion
|
||||
ko_pron>=1.3.0 # Korean pronunciation
|
||||
|
||||
# Utility libraries
|
||||
pyyaml>=5.4.0 # Configuration files
|
||||
tqdm>=4.60.0 # Progress bars
|
||||
psutil>=5.8.0 # System monitoring
|
||||
|
||||
# Additional dependencies for TTS model
|
||||
ffmpeg-python>=0.2.0 # Audio processing
|
||||
requests>=2.25.0 # Model downloading
|
||||
0
only_tts/src/AR/__init__.py
Normal file
0
only_tts/src/AR/__init__.py
Normal file
0
only_tts/src/AR/data/__init__.py
Normal file
0
only_tts/src/AR/data/__init__.py
Normal file
149
only_tts/src/AR/data/bucket_sampler.py
Normal file
149
only_tts/src/AR/data/bucket_sampler.py
Normal file
@ -0,0 +1,149 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/bucket_sampler.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import itertools
|
||||
import math
|
||||
import random
|
||||
from random import shuffle
|
||||
from typing import Iterator, Optional, TypeVar
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
from torch.utils.data import Dataset, Sampler
|
||||
|
||||
__all__ = [
|
||||
"DistributedBucketSampler",
|
||||
]
|
||||
|
||||
T_co = TypeVar("T_co", covariant=True)
|
||||
|
||||
|
||||
class DistributedBucketSampler(Sampler[T_co]):
|
||||
r"""
|
||||
sort the dataset wrt. input length
|
||||
divide samples into buckets
|
||||
sort within buckets
|
||||
divide buckets into batches
|
||||
sort batches
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dataset: Dataset,
|
||||
num_replicas: Optional[int] = None,
|
||||
rank: Optional[int] = None,
|
||||
shuffle: bool = True,
|
||||
seed: int = 0,
|
||||
drop_last: bool = False,
|
||||
batch_size: int = 32,
|
||||
) -> None:
|
||||
if num_replicas is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
|
||||
if rank is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
rank = dist.get_rank() if torch.cuda.is_available() else 0
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_device(rank)
|
||||
if rank >= num_replicas or rank < 0:
|
||||
raise ValueError("Invalid rank {}, rank should be in the interval [0, {}]".format(rank, num_replicas - 1))
|
||||
self.dataset = dataset
|
||||
self.num_replicas = num_replicas
|
||||
self.rank = rank
|
||||
self.epoch = 0
|
||||
self.drop_last = drop_last
|
||||
# If the dataset length is evenly divisible by # of replicas, then there
|
||||
# is no need to drop any data, since the dataset will be split equally.
|
||||
if self.drop_last and len(self.dataset) % self.num_replicas != 0: # type: ignore[arg-type]
|
||||
# Split to nearest available length that is evenly divisible.
|
||||
# This is to ensure each rank receives the same amount of data when
|
||||
# using this Sampler.
|
||||
self.num_samples = math.ceil(
|
||||
(len(self.dataset) - self.num_replicas) / self.num_replicas, # type: ignore[arg-type]
|
||||
)
|
||||
else:
|
||||
self.num_samples = math.ceil(
|
||||
len(self.dataset) / self.num_replicas,
|
||||
) # type: ignore[arg-type]
|
||||
self.total_size = self.num_samples * self.num_replicas
|
||||
self.shuffle = shuffle
|
||||
self.seed = seed
|
||||
self.batch_size = batch_size
|
||||
self.id_with_length = self._get_sample_lengths()
|
||||
self.id_buckets = self.make_buckets(bucket_width=2.0)
|
||||
|
||||
def _get_sample_lengths(self):
|
||||
id_with_lengths = []
|
||||
for i in range(len(self.dataset)):
|
||||
id_with_lengths.append((i, self.dataset.get_sample_length(i)))
|
||||
id_with_lengths.sort(key=lambda x: x[1])
|
||||
return id_with_lengths
|
||||
|
||||
def make_buckets(self, bucket_width: float = 2.0):
|
||||
buckets = []
|
||||
cur = []
|
||||
max_sec = bucket_width
|
||||
for id, sec in self.id_with_length:
|
||||
if sec < max_sec:
|
||||
cur.append(id)
|
||||
else:
|
||||
buckets.append(cur)
|
||||
cur = [id]
|
||||
max_sec += bucket_width
|
||||
if len(cur) > 0:
|
||||
buckets.append(cur)
|
||||
return buckets
|
||||
|
||||
def __iter__(self) -> Iterator[T_co]:
|
||||
if self.shuffle:
|
||||
# deterministically shuffle based on epoch and seed
|
||||
g = torch.Generator()
|
||||
g.manual_seed(self.seed + self.epoch)
|
||||
random.seed(self.epoch + self.seed)
|
||||
shuffled_bucket = []
|
||||
for buc in self.id_buckets:
|
||||
buc_copy = buc.copy()
|
||||
shuffle(buc_copy)
|
||||
shuffled_bucket.append(buc_copy)
|
||||
grouped_batch_size = self.batch_size * self.num_replicas
|
||||
shuffled_bucket = list(itertools.chain(*shuffled_bucket))
|
||||
n_batch = int(math.ceil(len(shuffled_bucket) / grouped_batch_size))
|
||||
batches = [shuffled_bucket[b * grouped_batch_size : (b + 1) * grouped_batch_size] for b in range(n_batch)]
|
||||
shuffle(batches)
|
||||
indices = list(itertools.chain(*batches))
|
||||
else:
|
||||
# type: ignore[arg-type]
|
||||
indices = list(range(len(self.dataset)))
|
||||
|
||||
if not self.drop_last:
|
||||
# add extra samples to make it evenly divisible
|
||||
padding_size = self.total_size - len(indices)
|
||||
if padding_size <= len(indices):
|
||||
indices += indices[:padding_size]
|
||||
else:
|
||||
indices += (indices * math.ceil(padding_size / len(indices)))[:padding_size]
|
||||
else:
|
||||
# remove tail of data to make it evenly divisible.
|
||||
indices = indices[: self.total_size]
|
||||
assert len(indices) == self.total_size
|
||||
|
||||
# subsample
|
||||
indices = indices[self.rank : self.total_size : self.num_replicas]
|
||||
assert len(indices) == self.num_samples
|
||||
|
||||
return iter(indices)
|
||||
|
||||
def __len__(self) -> int:
|
||||
return self.num_samples
|
||||
|
||||
def set_epoch(self, epoch: int) -> None:
|
||||
r"""
|
||||
Sets the epoch for this sampler. When :attr:`shuffle=True`, this ensures all replicas
|
||||
use a different random ordering for each epoch. Otherwise, the next iteration of this
|
||||
sampler will yield the same ordering.
|
||||
|
||||
Args:
|
||||
epoch (int): Epoch number.
|
||||
"""
|
||||
self.epoch = epoch
|
||||
81
only_tts/src/AR/data/data_module.py
Normal file
81
only_tts/src/AR/data/data_module.py
Normal file
@ -0,0 +1,81 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/data_module.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
from pytorch_lightning import LightningDataModule
|
||||
from torch.utils.data import DataLoader
|
||||
|
||||
from AR.data.bucket_sampler import DistributedBucketSampler
|
||||
from AR.data.dataset import Text2SemanticDataset
|
||||
|
||||
|
||||
class Text2SemanticDataModule(LightningDataModule):
|
||||
def __init__(
|
||||
self,
|
||||
config,
|
||||
train_semantic_path,
|
||||
train_phoneme_path,
|
||||
dev_semantic_path=None,
|
||||
dev_phoneme_path=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.train_semantic_path = train_semantic_path
|
||||
self.train_phoneme_path = train_phoneme_path
|
||||
self.dev_semantic_path = dev_semantic_path
|
||||
self.dev_phoneme_path = dev_phoneme_path
|
||||
self.num_workers = self.config["data"]["num_workers"]
|
||||
|
||||
def prepare_data(self):
|
||||
pass
|
||||
|
||||
def setup(self, stage=None, output_logs=False):
|
||||
self._train_dataset = Text2SemanticDataset(
|
||||
phoneme_path=self.train_phoneme_path,
|
||||
semantic_path=self.train_semantic_path,
|
||||
max_sec=self.config["data"]["max_sec"],
|
||||
pad_val=self.config["data"]["pad_val"],
|
||||
)
|
||||
self._dev_dataset = self._train_dataset
|
||||
# self._dev_dataset = Text2SemanticDataset(
|
||||
# phoneme_path=self.dev_phoneme_path,
|
||||
# semantic_path=self.dev_semantic_path,
|
||||
# max_sample=self.config['data']['max_eval_sample'],
|
||||
# max_sec=self.config['data']['max_sec'],
|
||||
# pad_val=self.config['data']['pad_val'])
|
||||
|
||||
def train_dataloader(self):
|
||||
batch_size = (
|
||||
self.config["train"]["batch_size"] // 2
|
||||
if self.config["train"].get("if_dpo", False) is True
|
||||
else self.config["train"]["batch_size"]
|
||||
)
|
||||
batch_size = max(min(batch_size, len(self._train_dataset) // 4), 1) # 防止不保存
|
||||
sampler = DistributedBucketSampler(self._train_dataset, batch_size=batch_size)
|
||||
return DataLoader(
|
||||
self._train_dataset,
|
||||
batch_size=batch_size,
|
||||
sampler=sampler,
|
||||
collate_fn=self._train_dataset.collate,
|
||||
num_workers=self.num_workers,
|
||||
persistent_workers=True,
|
||||
prefetch_factor=16,
|
||||
)
|
||||
|
||||
def val_dataloader(self):
|
||||
return DataLoader(
|
||||
self._dev_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=self._train_dataset.collate,
|
||||
num_workers=max(self.num_workers, 12),
|
||||
persistent_workers=True,
|
||||
prefetch_factor=16,
|
||||
)
|
||||
|
||||
# 这个会使用到嘛?
|
||||
def test_dataloader(self):
|
||||
return DataLoader(
|
||||
self._dev_dataset,
|
||||
batch_size=1,
|
||||
shuffle=False,
|
||||
collate_fn=self._train_dataset.collate,
|
||||
)
|
||||
320
only_tts/src/AR/data/dataset.py
Normal file
320
only_tts/src/AR/data/dataset.py
Normal file
@ -0,0 +1,320 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/data/dataset.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
|
||||
# sys.path.append("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert")
|
||||
import os
|
||||
import traceback
|
||||
from typing import Dict, List
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import torch
|
||||
from torch.utils.data import DataLoader, Dataset
|
||||
|
||||
version = os.environ.get("version", None)
|
||||
|
||||
from text import cleaned_text_to_sequence
|
||||
|
||||
# from config import exp_dir
|
||||
|
||||
|
||||
def batch_sequences(sequences: List[np.array], axis: int = 0, pad_value: int = 0):
|
||||
seq = sequences[0]
|
||||
ndim = seq.ndim
|
||||
if axis < 0:
|
||||
axis += ndim
|
||||
dtype = seq.dtype
|
||||
pad_value = dtype.type(pad_value)
|
||||
seq_lengths = [seq.shape[axis] for seq in sequences]
|
||||
max_length = np.max(seq_lengths)
|
||||
|
||||
padded_sequences = []
|
||||
for seq, length in zip(sequences, seq_lengths):
|
||||
padding = [(0, 0)] * axis + [(0, max_length - length)] + [(0, 0)] * (ndim - axis - 1)
|
||||
padded_seq = np.pad(seq, padding, mode="constant", constant_values=pad_value)
|
||||
padded_sequences.append(padded_seq)
|
||||
batch = np.stack(padded_sequences)
|
||||
return batch
|
||||
|
||||
|
||||
class Text2SemanticDataset(Dataset):
|
||||
"""dataset class for text tokens to semantic model training."""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
phoneme_path: str,
|
||||
semantic_path: str,
|
||||
max_sample: int = None,
|
||||
max_sec: int = 100,
|
||||
pad_val: int = 1024,
|
||||
# min value of phoneme/sec
|
||||
min_ps_ratio: int = 3,
|
||||
# max value of phoneme/sec
|
||||
max_ps_ratio: int = 25,
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.semantic_data = pd.read_csv(
|
||||
semantic_path,
|
||||
delimiter="\t",
|
||||
encoding="utf-8",
|
||||
)
|
||||
# get dict
|
||||
self.path2 = phoneme_path # "%s/2-name2text.txt"%exp_dir#phoneme_path
|
||||
self.path3 = "%s/3-bert" % (
|
||||
os.path.dirname(
|
||||
phoneme_path,
|
||||
)
|
||||
) # "%s/3-bert"%exp_dir#bert_dir
|
||||
self.path6 = semantic_path # "%s/6-name2semantic.tsv"%exp_dir#semantic_path
|
||||
assert os.path.exists(self.path2)
|
||||
assert os.path.exists(self.path6)
|
||||
self.phoneme_data = {}
|
||||
with open(self.path2, "r", encoding="utf8") as f:
|
||||
lines = f.read().strip("\n").split("\n")
|
||||
|
||||
for line in lines:
|
||||
tmp = line.split("\t")
|
||||
if len(tmp) != 4:
|
||||
continue
|
||||
self.phoneme_data[tmp[0]] = [tmp[1], tmp[2], tmp[3]]
|
||||
|
||||
# self.phoneme_data = np.load(phoneme_path, allow_pickle=True).item()
|
||||
# pad for semantic tokens
|
||||
self.PAD: int = pad_val
|
||||
# self.hz = 25
|
||||
# with open("/data/docker/liujing04/gpt-vits/mq-vits-s1bert_no_bert/configs/s2.json", "r") as f:data = f.read()
|
||||
# data=json.loads(data)["model"]["semantic_frame_rate"]#50hz
|
||||
# self.hz=int(data[:-2])#
|
||||
self.hz = int(os.environ.get("hz", "25hz")[:-2])
|
||||
|
||||
# max seconds of semantic token
|
||||
self.max_sec = max_sec
|
||||
self.min_ps_ratio = min_ps_ratio
|
||||
self.max_ps_ratio = max_ps_ratio
|
||||
|
||||
if max_sample is not None:
|
||||
self.semantic_data = self.semantic_data[:max_sample]
|
||||
|
||||
# {idx: (semantic, phoneme)}
|
||||
# semantic list, phoneme list
|
||||
self.semantic_phoneme = []
|
||||
self.item_names = []
|
||||
|
||||
self.inited = False
|
||||
|
||||
if not self.inited:
|
||||
# 调用初始化函数
|
||||
self.init_batch()
|
||||
self.inited = True
|
||||
del self.semantic_data
|
||||
del self.phoneme_data
|
||||
# self.tokenizer = AutoTokenizer.from_pretrained("hfl/chinese-roberta-wwm-ext-large")
|
||||
# self.tokenizer = AutoTokenizer.from_pretrained("/data/docker/liujing04/bert-vits2/Bert-VITS2-master20231106/bert/chinese-roberta-wwm-ext-large")
|
||||
|
||||
def init_batch(self):
|
||||
semantic_data_len = len(self.semantic_data)
|
||||
phoneme_data_len = len(self.phoneme_data.keys())
|
||||
print("semantic_data_len:", semantic_data_len)
|
||||
print("phoneme_data_len:", phoneme_data_len)
|
||||
print(self.semantic_data)
|
||||
idx = 0
|
||||
num_not_in = 0
|
||||
num_deleted_bigger = 0
|
||||
num_deleted_ps = 0
|
||||
for i in range(semantic_data_len):
|
||||
# 先依次遍历
|
||||
# get str
|
||||
item_name = self.semantic_data.iloc[i, 0]
|
||||
# print(self.phoneme_data)
|
||||
try:
|
||||
phoneme, word2ph, text = self.phoneme_data[item_name]
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
# print(f"{item_name} not in self.phoneme_data !")
|
||||
num_not_in += 1
|
||||
continue
|
||||
|
||||
semantic_str = self.semantic_data.iloc[i, 1]
|
||||
# get token list
|
||||
semantic_ids = [int(idx) for idx in semantic_str.split(" ")]
|
||||
# (T), 是否需要变成 (1, T) -> 不需要,因为需要求 len
|
||||
# 过滤掉太长的样本
|
||||
if (
|
||||
len(semantic_ids) > self.max_sec * self.hz
|
||||
): #########1###根据token个数推测总时长过滤时长60s(config里)#40*25=1k
|
||||
num_deleted_bigger += 1
|
||||
continue
|
||||
# (T, ), 这个速度不会很慢,所以可以在一开始就处理,无需在 __getitem__ 里面单个处理####
|
||||
phoneme = phoneme.split(" ")
|
||||
|
||||
try:
|
||||
phoneme_ids = cleaned_text_to_sequence(phoneme, version)
|
||||
except:
|
||||
traceback.print_exc()
|
||||
# print(f"{item_name} not in self.phoneme_data !")
|
||||
num_not_in += 1
|
||||
continue
|
||||
# if len(phoneme_ids) >400:###########2:改为恒定限制为semantic/2.5就行
|
||||
if len(phoneme_ids) > self.max_sec * self.hz / 2.5: ###########2:改为恒定限制为semantic/2.5就行
|
||||
num_deleted_ps += 1
|
||||
continue
|
||||
# if len(semantic_ids) > 1000:###########3
|
||||
# num_deleted_bigger += 1
|
||||
# continue
|
||||
|
||||
ps_ratio = len(phoneme_ids) / (len(semantic_ids) / self.hz)
|
||||
|
||||
if ps_ratio > self.max_ps_ratio or ps_ratio < self.min_ps_ratio: ##########4#3~25#每秒多少个phone
|
||||
num_deleted_ps += 1
|
||||
# print(item_name)
|
||||
continue
|
||||
|
||||
self.semantic_phoneme.append((semantic_ids, phoneme_ids))
|
||||
idx += 1
|
||||
self.item_names.append(item_name)
|
||||
|
||||
min_num = 100 # 20直接不补#30补了也不存ckpt
|
||||
leng = len(self.semantic_phoneme)
|
||||
if leng < min_num:
|
||||
tmp1 = self.semantic_phoneme
|
||||
tmp2 = self.item_names
|
||||
self.semantic_phoneme = []
|
||||
self.item_names = []
|
||||
for _ in range(max(2, int(min_num / leng))):
|
||||
self.semantic_phoneme += tmp1
|
||||
self.item_names += tmp2
|
||||
if num_not_in > 0:
|
||||
print(f"there are {num_not_in} semantic datas not in phoneme datas")
|
||||
if num_deleted_bigger > 0:
|
||||
print(
|
||||
f"deleted {num_deleted_bigger} audios who's duration are bigger than {self.max_sec} seconds",
|
||||
)
|
||||
if num_deleted_ps > 0:
|
||||
# 4702 for LibriTTS, LirbriTTS 是标注数据, 是否需要筛?=> 需要,有值为 100 的极端值
|
||||
print(
|
||||
f"deleted {num_deleted_ps} audios who's phoneme/sec are bigger than {self.max_ps_ratio} or smaller than {self.min_ps_ratio}",
|
||||
)
|
||||
"""
|
||||
there are 31 semantic datas not in phoneme datas
|
||||
deleted 34 audios who's duration are bigger than 54 seconds
|
||||
deleted 3190 audios who's phoneme/sec are bigger than 25 or smaller than 3
|
||||
dataset.__len__(): 366463
|
||||
|
||||
"""
|
||||
# 345410 for LibriTTS
|
||||
print("dataset.__len__():", self.__len__())
|
||||
|
||||
def __get_item_names__(self) -> List[str]:
|
||||
return self.item_names
|
||||
|
||||
def __len__(self) -> int:
|
||||
return len(self.semantic_phoneme)
|
||||
|
||||
def __getitem__(self, idx: int) -> Dict:
|
||||
semantic_ids, phoneme_ids = self.semantic_phoneme[idx]
|
||||
item_name = self.item_names[idx]
|
||||
phoneme_ids_len = len(phoneme_ids)
|
||||
# semantic tokens target
|
||||
semantic_ids_len = len(semantic_ids)
|
||||
|
||||
flag = 0
|
||||
path_bert = "%s/%s.pt" % (self.path3, item_name)
|
||||
if os.path.exists(path_bert) == True:
|
||||
bert_feature = torch.load(path_bert, map_location="cpu")
|
||||
else:
|
||||
flag = 1
|
||||
if flag == 1:
|
||||
# bert_feature=torch.zeros_like(phoneme_ids,dtype=torch.float32)
|
||||
bert_feature = None
|
||||
else:
|
||||
assert bert_feature.shape[-1] == len(phoneme_ids)
|
||||
return {
|
||||
"idx": idx,
|
||||
"phoneme_ids": phoneme_ids,
|
||||
"phoneme_ids_len": phoneme_ids_len,
|
||||
"semantic_ids": semantic_ids,
|
||||
"semantic_ids_len": semantic_ids_len,
|
||||
"bert_feature": bert_feature,
|
||||
}
|
||||
|
||||
def get_sample_length(self, idx: int):
|
||||
semantic_ids = self.semantic_phoneme[idx][0]
|
||||
sec = 1.0 * len(semantic_ids) / self.hz
|
||||
return sec
|
||||
|
||||
def collate(self, examples: List[Dict]) -> Dict:
|
||||
sample_index: List[int] = []
|
||||
phoneme_ids: List[torch.Tensor] = []
|
||||
phoneme_ids_lens: List[int] = []
|
||||
semantic_ids: List[torch.Tensor] = []
|
||||
semantic_ids_lens: List[int] = []
|
||||
# return
|
||||
|
||||
for item in examples:
|
||||
sample_index.append(item["idx"])
|
||||
phoneme_ids.append(np.array(item["phoneme_ids"], dtype=np.int64))
|
||||
semantic_ids.append(np.array(item["semantic_ids"], dtype=np.int64))
|
||||
phoneme_ids_lens.append(item["phoneme_ids_len"])
|
||||
semantic_ids_lens.append(item["semantic_ids_len"])
|
||||
|
||||
# pad 0
|
||||
phoneme_ids = batch_sequences(phoneme_ids)
|
||||
semantic_ids = batch_sequences(semantic_ids, pad_value=self.PAD)
|
||||
|
||||
# # convert each batch to torch.tensor
|
||||
phoneme_ids = torch.tensor(phoneme_ids)
|
||||
semantic_ids = torch.tensor(semantic_ids)
|
||||
phoneme_ids_lens = torch.tensor(phoneme_ids_lens)
|
||||
semantic_ids_lens = torch.tensor(semantic_ids_lens)
|
||||
bert_padded = torch.FloatTensor(len(examples), 1024, max(phoneme_ids_lens))
|
||||
bert_padded.zero_()
|
||||
|
||||
for idx, item in enumerate(examples):
|
||||
bert = item["bert_feature"]
|
||||
if bert != None:
|
||||
bert_padded[idx, :, : bert.shape[-1]] = bert
|
||||
|
||||
return {
|
||||
# List[int]
|
||||
"ids": sample_index,
|
||||
# torch.Tensor (B, max_phoneme_length)
|
||||
"phoneme_ids": phoneme_ids,
|
||||
# torch.Tensor (B)
|
||||
"phoneme_ids_len": phoneme_ids_lens,
|
||||
# torch.Tensor (B, max_semantic_ids_length)
|
||||
"semantic_ids": semantic_ids,
|
||||
# torch.Tensor (B)
|
||||
"semantic_ids_len": semantic_ids_lens,
|
||||
# torch.Tensor (B, 1024, max_phoneme_length)
|
||||
"bert_feature": bert_padded,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
root_dir = "/data/docker/liujing04/gpt-vits/prepare/dump_mix/"
|
||||
dataset = Text2SemanticDataset(
|
||||
phoneme_path=root_dir + "phoneme_train.npy",
|
||||
semantic_path=root_dir + "semantic_train.tsv",
|
||||
)
|
||||
|
||||
batch_size = 12
|
||||
dataloader = DataLoader(
|
||||
dataset,
|
||||
batch_size=batch_size,
|
||||
collate_fn=dataset.collate,
|
||||
shuffle=False,
|
||||
)
|
||||
for i, batch in enumerate(dataloader):
|
||||
if i % 1000 == 0:
|
||||
print(i)
|
||||
# if i == 0:
|
||||
# print('batch["ids"]:', batch["ids"])
|
||||
# print('batch["phoneme_ids"]:', batch["phoneme_ids"],
|
||||
# batch["phoneme_ids"].shape)
|
||||
# print('batch["phoneme_ids_len"]:', batch["phoneme_ids_len"],
|
||||
# batch["phoneme_ids_len"].shape)
|
||||
# print('batch["semantic_ids"]:', batch["semantic_ids"],
|
||||
# batch["semantic_ids"].shape)
|
||||
# print('batch["semantic_ids_len"]:', batch["semantic_ids_len"],
|
||||
# batch["semantic_ids_len"].shape)
|
||||
0
only_tts/src/AR/models/__init__.py
Normal file
0
only_tts/src/AR/models/__init__.py
Normal file
146
only_tts/src/AR/models/t2s_lightning_module.py
Normal file
146
only_tts/src/AR/models/t2s_lightning_module.py
Normal file
@ -0,0 +1,146 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import os
|
||||
import sys
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
from pytorch_lightning import LightningModule
|
||||
|
||||
from AR.models.t2s_model import Text2SemanticDecoder
|
||||
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
||||
from AR.modules.optim import ScaledAdam
|
||||
|
||||
|
||||
class Text2SemanticLightningModule(LightningModule):
|
||||
def __init__(self, config, output_dir, is_train=True):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = 3
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
||||
pretrained_s1 = config.get("pretrained_s1")
|
||||
if pretrained_s1 and is_train:
|
||||
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
||||
print(
|
||||
self.load_state_dict(
|
||||
torch.load(
|
||||
pretrained_s1,
|
||||
map_location="cpu",
|
||||
weights_only=False,
|
||||
)["weight"],
|
||||
)
|
||||
)
|
||||
if is_train:
|
||||
self.automatic_optimization = False
|
||||
self.save_hyperparameters()
|
||||
self.eval_dir = output_dir / "eval"
|
||||
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def training_step(self, batch: Dict, batch_idx: int):
|
||||
opt = self.optimizers()
|
||||
scheduler = self.lr_schedulers()
|
||||
forward = self.model.forward if self.config["train"].get("if_dpo", False) == True else self.model.forward_old
|
||||
loss, acc = forward(
|
||||
batch["phoneme_ids"],
|
||||
batch["phoneme_ids_len"],
|
||||
batch["semantic_ids"],
|
||||
batch["semantic_ids_len"],
|
||||
batch["bert_feature"],
|
||||
)
|
||||
self.manual_backward(loss)
|
||||
if batch_idx > 0 and batch_idx % 4 == 0:
|
||||
opt.step()
|
||||
opt.zero_grad()
|
||||
scheduler.step()
|
||||
|
||||
self.log(
|
||||
"total_loss",
|
||||
loss,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
"lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
f"top_{self.top_k}_acc",
|
||||
acc,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
|
||||
def validation_step(self, batch: Dict, batch_idx: int):
|
||||
return
|
||||
|
||||
# # get loss
|
||||
# loss, acc = self.model.forward(
|
||||
# batch['phoneme_ids'], batch['phoneme_ids_len'],
|
||||
# batch['semantic_ids'], batch['semantic_ids_len'],
|
||||
# batch['bert_feature']
|
||||
# )
|
||||
#
|
||||
# self.log(
|
||||
# "val_total_loss",
|
||||
# loss,
|
||||
# on_step=True,
|
||||
# on_epoch=True,
|
||||
# prog_bar=True,
|
||||
# sync_dist=True)
|
||||
# self.log(
|
||||
# f"val_top_{self.top_k}_acc",
|
||||
# acc,
|
||||
# on_step=True,
|
||||
# on_epoch=True,
|
||||
# prog_bar=True,
|
||||
# sync_dist=True)
|
||||
#
|
||||
# # get infer output
|
||||
# semantic_len = batch['semantic_ids'].size(1)
|
||||
# prompt_len = min(int(semantic_len * 0.5), 150)
|
||||
# prompt = batch['semantic_ids'][:, :prompt_len]
|
||||
# pred_semantic = self.model.infer(batch['phoneme_ids'],
|
||||
# batch['phoneme_ids_len'], prompt,
|
||||
# batch['bert_feature']
|
||||
# )
|
||||
# save_name = f'semantic_toks_{batch_idx}.pt'
|
||||
# save_path = os.path.join(self.eval_dir, save_name)
|
||||
# torch.save(pred_semantic.detach().cpu(), save_path)
|
||||
|
||||
def configure_optimizers(self):
|
||||
model_parameters = self.model.parameters()
|
||||
parameters_names = []
|
||||
parameters_names.append([name_param_pair[0] for name_param_pair in self.model.named_parameters()])
|
||||
lm_opt = ScaledAdam(
|
||||
model_parameters,
|
||||
lr=0.01,
|
||||
betas=(0.9, 0.95),
|
||||
clipping_scale=2.0,
|
||||
parameters_names=parameters_names,
|
||||
show_dominant_parameters=False,
|
||||
clipping_update_period=1000,
|
||||
)
|
||||
|
||||
return {
|
||||
"optimizer": lm_opt,
|
||||
"lr_scheduler": {
|
||||
"scheduler": WarmupCosineLRSchedule(
|
||||
lm_opt,
|
||||
init_lr=self.config["optimizer"]["lr_init"],
|
||||
peak_lr=self.config["optimizer"]["lr"],
|
||||
end_lr=self.config["optimizer"]["lr_end"],
|
||||
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
||||
total_steps=self.config["optimizer"]["decay_steps"],
|
||||
)
|
||||
},
|
||||
}
|
||||
110
only_tts/src/AR/models/t2s_lightning_module_onnx.py
Normal file
110
only_tts/src/AR/models/t2s_lightning_module_onnx.py
Normal file
@ -0,0 +1,110 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_lightning_module.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import os
|
||||
import sys
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
from typing import Dict
|
||||
|
||||
import torch
|
||||
from pytorch_lightning import LightningModule
|
||||
|
||||
from AR.models.t2s_model_onnx import Text2SemanticDecoder
|
||||
from AR.modules.lr_schedulers import WarmupCosineLRSchedule
|
||||
from AR.modules.optim import ScaledAdam
|
||||
|
||||
|
||||
class Text2SemanticLightningModule(LightningModule):
|
||||
def __init__(self, config, output_dir, is_train=True):
|
||||
super().__init__()
|
||||
self.config = config
|
||||
self.top_k = 3
|
||||
self.model = Text2SemanticDecoder(config=config, top_k=self.top_k)
|
||||
pretrained_s1 = config.get("pretrained_s1")
|
||||
if pretrained_s1 and is_train:
|
||||
# print(self.load_state_dict(torch.load(pretrained_s1,map_location="cpu")["state_dict"]))
|
||||
print(
|
||||
self.load_state_dict(
|
||||
torch.load(
|
||||
pretrained_s1,
|
||||
map_location="cpu",
|
||||
)["weight"],
|
||||
),
|
||||
)
|
||||
if is_train:
|
||||
self.automatic_optimization = False
|
||||
self.save_hyperparameters()
|
||||
self.eval_dir = output_dir / "eval"
|
||||
self.eval_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
def training_step(self, batch: Dict, batch_idx: int):
|
||||
opt = self.optimizers()
|
||||
scheduler = self.lr_schedulers()
|
||||
loss, acc = self.model.forward(
|
||||
batch["phoneme_ids"],
|
||||
batch["phoneme_ids_len"],
|
||||
batch["semantic_ids"],
|
||||
batch["semantic_ids_len"],
|
||||
batch["bert_feature"],
|
||||
)
|
||||
self.manual_backward(loss)
|
||||
if batch_idx > 0 and batch_idx % 4 == 0:
|
||||
opt.step()
|
||||
opt.zero_grad()
|
||||
scheduler.step()
|
||||
|
||||
self.log(
|
||||
"total_loss",
|
||||
loss,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
"lr",
|
||||
scheduler.get_last_lr()[0],
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
self.log(
|
||||
f"top_{self.top_k}_acc",
|
||||
acc,
|
||||
on_step=True,
|
||||
on_epoch=True,
|
||||
prog_bar=True,
|
||||
sync_dist=True,
|
||||
)
|
||||
|
||||
def validation_step(self, batch: Dict, batch_idx: int):
|
||||
return
|
||||
|
||||
def configure_optimizers(self):
|
||||
model_parameters = self.model.parameters()
|
||||
parameters_names = []
|
||||
parameters_names.append([name_param_pair[0] for name_param_pair in self.model.named_parameters()])
|
||||
lm_opt = ScaledAdam(
|
||||
model_parameters,
|
||||
lr=0.01,
|
||||
betas=(0.9, 0.95),
|
||||
clipping_scale=2.0,
|
||||
parameters_names=parameters_names,
|
||||
show_dominant_parameters=False,
|
||||
clipping_update_period=1000,
|
||||
)
|
||||
|
||||
return {
|
||||
"optimizer": lm_opt,
|
||||
"lr_scheduler": {
|
||||
"scheduler": WarmupCosineLRSchedule(
|
||||
lm_opt,
|
||||
init_lr=self.config["optimizer"]["lr_init"],
|
||||
peak_lr=self.config["optimizer"]["lr"],
|
||||
end_lr=self.config["optimizer"]["lr_end"],
|
||||
warmup_steps=self.config["optimizer"]["warmup_steps"],
|
||||
total_steps=self.config["optimizer"]["decay_steps"],
|
||||
)
|
||||
},
|
||||
}
|
||||
935
only_tts/src/AR/models/t2s_model.py
Normal file
935
only_tts/src/AR/models/t2s_model.py
Normal file
@ -0,0 +1,935 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import math
|
||||
from typing import List, Optional
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torchmetrics.classification import MulticlassAccuracy
|
||||
from tqdm import tqdm
|
||||
|
||||
from AR.models.utils import (
|
||||
dpo_loss,
|
||||
get_batch_logps,
|
||||
make_pad_mask,
|
||||
make_pad_mask_left,
|
||||
make_reject_y,
|
||||
sample,
|
||||
topk_sampling,
|
||||
)
|
||||
from AR.modules.embedding import SinePositionalEmbedding, TokenEmbedding
|
||||
from AR.modules.transformer import LayerNorm, TransformerEncoder, TransformerEncoderLayer
|
||||
|
||||
default_config = {
|
||||
"embedding_dim": 512,
|
||||
"hidden_dim": 512,
|
||||
"num_head": 8,
|
||||
"num_layers": 12,
|
||||
"num_codebook": 8,
|
||||
"p_dropout": 0.0,
|
||||
"vocab_size": 1024 + 1,
|
||||
"phoneme_vocab_size": 512,
|
||||
"EOS": 1024,
|
||||
}
|
||||
|
||||
|
||||
# @torch.jit.script ## 使用的话首次推理会非常慢,而且推理速度不稳定
|
||||
# Efficient implementation equivalent to the following:
|
||||
def scaled_dot_product_attention(
|
||||
query: torch.Tensor,
|
||||
key: torch.Tensor,
|
||||
value: torch.Tensor,
|
||||
attn_mask: Optional[torch.Tensor] = None,
|
||||
scale: Optional[torch.Tensor] = None,
|
||||
) -> torch.Tensor:
|
||||
B, H, L, S = query.size(0), query.size(1), query.size(-2), key.size(-2)
|
||||
if scale is None:
|
||||
scale_factor = torch.tensor(1 / math.sqrt(query.size(-1)))
|
||||
else:
|
||||
scale_factor = scale
|
||||
attn_bias = torch.zeros(B, H, L, S, dtype=query.dtype, device=query.device)
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_bias.masked_fill_(attn_mask, float("-inf"))
|
||||
else:
|
||||
attn_bias += attn_mask
|
||||
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
||||
attn_weight += attn_bias
|
||||
attn_weight = torch.softmax(attn_weight, dim=-1)
|
||||
|
||||
if attn_mask is not None:
|
||||
if attn_mask.dtype == torch.bool:
|
||||
attn_weight.masked_fill_(attn_mask, 0)
|
||||
else:
|
||||
attn_mask[attn_mask != float("-inf")] = 0
|
||||
attn_mask[attn_mask == float("-inf")] = 1
|
||||
attn_weight.masked_fill_(attn_mask, 0)
|
||||
|
||||
return attn_weight @ value
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2SMLP:
|
||||
def __init__(self, w1, b1, w2, b2):
|
||||
self.w1 = w1
|
||||
self.b1 = b1
|
||||
self.w2 = w2
|
||||
self.b2 = b2
|
||||
|
||||
def forward(self, x):
|
||||
x = F.relu(F.linear(x, self.w1, self.b1))
|
||||
x = F.linear(x, self.w2, self.b2)
|
||||
return x
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2SBlock:
|
||||
def __init__(
|
||||
self,
|
||||
num_heads,
|
||||
hidden_dim: int,
|
||||
mlp: T2SMLP,
|
||||
qkv_w,
|
||||
qkv_b,
|
||||
out_w,
|
||||
out_b,
|
||||
norm_w1,
|
||||
norm_b1,
|
||||
norm_eps1,
|
||||
norm_w2,
|
||||
norm_b2,
|
||||
norm_eps2,
|
||||
):
|
||||
self.num_heads = num_heads
|
||||
self.mlp = mlp
|
||||
self.hidden_dim: int = hidden_dim
|
||||
self.qkv_w = qkv_w
|
||||
self.qkv_b = qkv_b
|
||||
self.out_w = out_w
|
||||
self.out_b = out_b
|
||||
self.norm_w1 = norm_w1
|
||||
self.norm_b1 = norm_b1
|
||||
self.norm_eps1 = norm_eps1
|
||||
self.norm_w2 = norm_w2
|
||||
self.norm_b2 = norm_b2
|
||||
self.norm_eps2 = norm_eps2
|
||||
|
||||
self.false = torch.tensor(False, dtype=torch.bool)
|
||||
|
||||
@torch.jit.ignore
|
||||
def to_mask(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
padding_mask: Optional[torch.Tensor],
|
||||
):
|
||||
if padding_mask is None:
|
||||
return x
|
||||
|
||||
if padding_mask.dtype == torch.bool:
|
||||
return x.masked_fill(padding_mask, 0)
|
||||
else:
|
||||
return x * padding_mask
|
||||
|
||||
def process_prompt(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
attn_mask: torch.Tensor,
|
||||
padding_mask: Optional[torch.Tensor] = None,
|
||||
torch_sdpa: bool = True,
|
||||
):
|
||||
q, k, v = F.linear(self.to_mask(x, padding_mask), self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||
|
||||
batch_size = q.shape[0]
|
||||
q_len = q.shape[1]
|
||||
kv_len = k.shape[1]
|
||||
|
||||
q = self.to_mask(q, padding_mask)
|
||||
k_cache = self.to_mask(k, padding_mask)
|
||||
v_cache = self.to_mask(v, padding_mask)
|
||||
|
||||
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
|
||||
if torch_sdpa:
|
||||
attn = F.scaled_dot_product_attention(q, k, v, ~attn_mask)
|
||||
else:
|
||||
attn = scaled_dot_product_attention(q, k, v, attn_mask)
|
||||
|
||||
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
|
||||
attn = F.linear(self.to_mask(attn, padding_mask), self.out_w, self.out_b)
|
||||
|
||||
x = x + attn
|
||||
x = F.layer_norm(x, [self.hidden_dim], self.norm_w1, self.norm_b1, self.norm_eps1)
|
||||
x = x + self.mlp.forward(x)
|
||||
x = F.layer_norm(
|
||||
x,
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
def decode_next_token(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
k_cache: torch.Tensor,
|
||||
v_cache: torch.Tensor,
|
||||
attn_mask: torch.Tensor = None,
|
||||
torch_sdpa: bool = True,
|
||||
):
|
||||
q, k, v = F.linear(x, self.qkv_w, self.qkv_b).chunk(3, dim=-1)
|
||||
|
||||
k_cache = torch.cat([k_cache, k], dim=1)
|
||||
v_cache = torch.cat([v_cache, v], dim=1)
|
||||
|
||||
batch_size = q.shape[0]
|
||||
q_len = q.shape[1]
|
||||
kv_len = k_cache.shape[1]
|
||||
|
||||
q = q.view(batch_size, q_len, self.num_heads, -1).transpose(1, 2)
|
||||
k = k_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
v = v_cache.view(batch_size, kv_len, self.num_heads, -1).transpose(1, 2)
|
||||
|
||||
if torch_sdpa:
|
||||
attn = F.scaled_dot_product_attention(q, k, v, (~attn_mask) if attn_mask is not None else None)
|
||||
else:
|
||||
attn = scaled_dot_product_attention(q, k, v, attn_mask)
|
||||
|
||||
attn = attn.transpose(1, 2).reshape(batch_size, q_len, -1)
|
||||
attn = F.linear(attn, self.out_w, self.out_b)
|
||||
|
||||
x = x + attn
|
||||
x = F.layer_norm(
|
||||
x,
|
||||
[self.hidden_dim],
|
||||
self.norm_w1,
|
||||
self.norm_b1,
|
||||
self.norm_eps1,
|
||||
)
|
||||
x = x + self.mlp.forward(x)
|
||||
x = F.layer_norm(
|
||||
x,
|
||||
[self.hidden_dim],
|
||||
self.norm_w2,
|
||||
self.norm_b2,
|
||||
self.norm_eps2,
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
class T2STransformer:
|
||||
def __init__(self, num_blocks: int, blocks: List[T2SBlock]):
|
||||
self.num_blocks: int = num_blocks
|
||||
self.blocks = blocks
|
||||
|
||||
def process_prompt(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
attn_mask: torch.Tensor,
|
||||
padding_mask: Optional[torch.Tensor] = None,
|
||||
torch_sdpa: bool = True,
|
||||
):
|
||||
k_cache: List[torch.Tensor] = []
|
||||
v_cache: List[torch.Tensor] = []
|
||||
for i in range(self.num_blocks):
|
||||
x, k_cache_, v_cache_ = self.blocks[i].process_prompt(x, attn_mask, padding_mask, torch_sdpa)
|
||||
k_cache.append(k_cache_)
|
||||
v_cache.append(v_cache_)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
def decode_next_token(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
k_cache: List[torch.Tensor],
|
||||
v_cache: List[torch.Tensor],
|
||||
attn_mask: torch.Tensor = None,
|
||||
torch_sdpa: bool = True,
|
||||
):
|
||||
for i in range(self.num_blocks):
|
||||
x, k_cache[i], v_cache[i] = self.blocks[i].decode_next_token(
|
||||
x, k_cache[i], v_cache[i], attn_mask, torch_sdpa
|
||||
)
|
||||
return x, k_cache, v_cache
|
||||
|
||||
|
||||
class Text2SemanticDecoder(nn.Module):
|
||||
def __init__(self, config, norm_first=False, top_k=3):
|
||||
super(Text2SemanticDecoder, self).__init__()
|
||||
self.model_dim = config["model"]["hidden_dim"]
|
||||
self.embedding_dim = config["model"]["embedding_dim"]
|
||||
self.num_head = config["model"]["head"]
|
||||
self.num_layers = config["model"]["n_layer"]
|
||||
self.norm_first = norm_first
|
||||
self.vocab_size = config["model"]["vocab_size"]
|
||||
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
||||
self.p_dropout = config["model"]["dropout"]
|
||||
self.EOS = config["model"]["EOS"]
|
||||
self.norm_first = norm_first
|
||||
assert self.EOS == self.vocab_size - 1
|
||||
# should be same as num of kmeans bin
|
||||
# assert self.EOS == 1024
|
||||
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
||||
self.ar_text_embedding = TokenEmbedding(
|
||||
self.embedding_dim,
|
||||
self.phoneme_vocab_size,
|
||||
self.p_dropout,
|
||||
)
|
||||
self.ar_text_position = SinePositionalEmbedding(
|
||||
self.embedding_dim,
|
||||
dropout=0.1,
|
||||
scale=False,
|
||||
alpha=True,
|
||||
)
|
||||
self.ar_audio_embedding = TokenEmbedding(
|
||||
self.embedding_dim,
|
||||
self.vocab_size,
|
||||
self.p_dropout,
|
||||
)
|
||||
self.ar_audio_position = SinePositionalEmbedding(
|
||||
self.embedding_dim,
|
||||
dropout=0.1,
|
||||
scale=False,
|
||||
alpha=True,
|
||||
)
|
||||
|
||||
self.h = TransformerEncoder(
|
||||
TransformerEncoderLayer(
|
||||
d_model=self.model_dim,
|
||||
nhead=self.num_head,
|
||||
dim_feedforward=self.model_dim * 4,
|
||||
dropout=0.1,
|
||||
batch_first=True,
|
||||
norm_first=norm_first,
|
||||
),
|
||||
num_layers=self.num_layers,
|
||||
norm=LayerNorm(self.model_dim) if norm_first else None,
|
||||
)
|
||||
|
||||
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
||||
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
||||
|
||||
self.ar_accuracy_metric = MulticlassAccuracy(
|
||||
self.vocab_size,
|
||||
top_k=top_k,
|
||||
average="micro",
|
||||
multidim_average="global",
|
||||
ignore_index=self.EOS,
|
||||
)
|
||||
|
||||
blocks = []
|
||||
|
||||
for i in range(self.num_layers):
|
||||
layer = self.h.layers[i]
|
||||
t2smlp = T2SMLP(
|
||||
layer.linear1.weight,
|
||||
layer.linear1.bias,
|
||||
layer.linear2.weight,
|
||||
layer.linear2.bias,
|
||||
)
|
||||
|
||||
block = T2SBlock(
|
||||
self.num_head,
|
||||
self.model_dim,
|
||||
t2smlp,
|
||||
layer.self_attn.in_proj_weight,
|
||||
layer.self_attn.in_proj_bias,
|
||||
layer.self_attn.out_proj.weight,
|
||||
layer.self_attn.out_proj.bias,
|
||||
layer.norm1.weight,
|
||||
layer.norm1.bias,
|
||||
layer.norm1.eps,
|
||||
layer.norm2.weight,
|
||||
layer.norm2.bias,
|
||||
layer.norm2.eps,
|
||||
)
|
||||
|
||||
blocks.append(block)
|
||||
|
||||
self.t2s_transformer = T2STransformer(self.num_layers, blocks)
|
||||
|
||||
def make_input_data(self, x, x_lens, y, y_lens, bert_feature):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
x_mask = make_pad_mask_left(x_lens)
|
||||
|
||||
y_mask = make_pad_mask(y_lens)
|
||||
y_mask_int = y_mask.type(torch.int64)
|
||||
codes = y.type(torch.int64) * (1 - y_mask_int)
|
||||
|
||||
# Training
|
||||
# AR Decoder
|
||||
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
||||
x_len = x_lens.max()
|
||||
y_len = y_lens.max()
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
|
||||
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||
|
||||
ar_xy_padding_mask = xy_padding_mask
|
||||
|
||||
x_attn_mask = F.pad(
|
||||
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
||||
(0, y_len),
|
||||
value=True,
|
||||
)
|
||||
# x_attn_mask[:, x_len]=False
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
||||
diagonal=1,
|
||||
),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
|
||||
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
||||
bsz, src_len = x.shape[0], x_len + y_len
|
||||
_xy_padding_mask = (
|
||||
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
||||
.expand(-1, self.num_head, -1, -1)
|
||||
.reshape(bsz * self.num_head, 1, src_len)
|
||||
)
|
||||
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
||||
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
||||
xy_attn_mask = new_attn_mask
|
||||
# x 和完整的 y 一次性输入模型
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
|
||||
return xy_pos, xy_attn_mask, targets
|
||||
|
||||
def forward(self, x, x_lens, y, y_lens, bert_feature):
|
||||
"""
|
||||
x: phoneme_ids
|
||||
y: semantic_ids
|
||||
"""
|
||||
|
||||
reject_y, reject_y_lens = make_reject_y(y, y_lens)
|
||||
|
||||
xy_pos, xy_attn_mask, targets = self.make_input_data(x, x_lens, y, y_lens, bert_feature)
|
||||
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask,
|
||||
)
|
||||
x_len = x_lens.max()
|
||||
logits = self.ar_predict_layer(xy_dec[:, x_len-1:])
|
||||
|
||||
###### DPO #############
|
||||
reject_xy_pos, reject_xy_attn_mask, reject_targets = self.make_input_data(
|
||||
x, x_lens, reject_y, reject_y_lens, bert_feature
|
||||
)
|
||||
|
||||
reject_xy_dec, _ = self.h(
|
||||
(reject_xy_pos, None),
|
||||
mask=reject_xy_attn_mask,
|
||||
)
|
||||
x_len = x_lens.max()
|
||||
reject_logits = self.ar_predict_layer(reject_xy_dec[:, x_len-1:])
|
||||
|
||||
# loss
|
||||
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
||||
|
||||
loss_1 = F.cross_entropy(logits.permute(0, 2, 1), targets, reduction="sum")
|
||||
acc = self.ar_accuracy_metric(logits.permute(0, 2, 1).detach(), targets).item()
|
||||
|
||||
A_logits, R_logits = get_batch_logps(logits, reject_logits, targets, reject_targets)
|
||||
loss_2, _, _ = dpo_loss(A_logits, R_logits, 0, 0, 0.2, reference_free=True)
|
||||
|
||||
loss = loss_1 + loss_2
|
||||
|
||||
return loss, acc
|
||||
|
||||
def forward_old(self, x, x_lens, y, y_lens, bert_feature):
|
||||
"""
|
||||
x: phoneme_ids
|
||||
y: semantic_ids
|
||||
"""
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
x_mask = make_pad_mask_left(x_lens)
|
||||
|
||||
y_mask = make_pad_mask(y_lens)
|
||||
y_mask_int = y_mask.type(torch.int64)
|
||||
codes = y.type(torch.int64) * (1 - y_mask_int)
|
||||
|
||||
# Training
|
||||
# AR Decoder
|
||||
y, targets = self.pad_y_eos(codes, y_mask_int, eos_id=self.EOS)
|
||||
x_len = x_lens.max()
|
||||
y_len = y_lens.max()
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
|
||||
xy_padding_mask = torch.concat([x_mask, y_mask], dim=1)
|
||||
ar_xy_padding_mask = xy_padding_mask
|
||||
|
||||
x_attn_mask = F.pad(
|
||||
torch.zeros((x_len, x_len), dtype=torch.bool, device=x.device),
|
||||
(0, y_len),
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(
|
||||
torch.ones(y_len, y_len, dtype=torch.bool, device=x.device),
|
||||
diagonal=1,
|
||||
),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask, y_attn_mask], dim=0)
|
||||
bsz, src_len = x.shape[0], x_len + y_len
|
||||
_xy_padding_mask = (
|
||||
ar_xy_padding_mask.view(bsz, 1, 1, src_len)
|
||||
.expand(-1, self.num_head, -1, -1)
|
||||
.reshape(bsz * self.num_head, 1, src_len)
|
||||
)
|
||||
xy_attn_mask = xy_attn_mask.logical_or(_xy_padding_mask)
|
||||
new_attn_mask = torch.zeros_like(xy_attn_mask, dtype=x.dtype)
|
||||
new_attn_mask.masked_fill_(xy_attn_mask, float("-inf"))
|
||||
xy_attn_mask = new_attn_mask
|
||||
# x 和完整的 y 一次性输入模型
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask,
|
||||
)
|
||||
logits = self.ar_predict_layer(xy_dec[:, x_len-1:]).permute(0, 2, 1)
|
||||
# loss
|
||||
# from feiteng: 每次 duration 越多, 梯度更新也应该更多, 所以用 sum
|
||||
loss = F.cross_entropy(logits, targets, reduction="sum")
|
||||
acc = self.ar_accuracy_metric(logits.detach(), targets).item()
|
||||
return loss, acc
|
||||
|
||||
# 需要看下这个函数和 forward 的区别以及没有 semantic 的时候 prompts 输入什么
|
||||
def infer(
|
||||
self,
|
||||
x,
|
||||
x_lens,
|
||||
prompts,
|
||||
bert_feature,
|
||||
top_k: int = -100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
prefix_len = y.shape[1]
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
for _ in tqdm(range(1500)):
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
# x 和逐渐增长的 y 一起输入给模型
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
y_len = y.shape[1]
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len),
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0).to(y.device)
|
||||
|
||||
xy_dec, _ = self.h(
|
||||
(xy_pos, None),
|
||||
mask=xy_attn_mask,
|
||||
)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = topk_sampling(logits, top_k=top_k, top_p=1.0, temperature=temperature)
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
# print(torch.argmax(logits, dim=-1)[0] == self.EOS, samples[0, 0] == self.EOS)
|
||||
stop = True
|
||||
if stop:
|
||||
if prompts.shape[1] == y.shape[1]:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
# 本次生成的 semantic_ids 和之前的 y 构成新的 y
|
||||
# print(samples.shape)#[1,1]#第一个1是bs
|
||||
# import os
|
||||
# os._exit(2333)
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
return y
|
||||
|
||||
def pad_y_eos(self, y, y_mask_int, eos_id):
|
||||
targets = F.pad(y, (0, 1), value=0) + eos_id * F.pad(y_mask_int, (0, 1), value=1)
|
||||
# 错位
|
||||
return targets[:, :-1], targets
|
||||
|
||||
def infer_panel_batch_infer(
|
||||
self,
|
||||
x: List[torch.LongTensor], #####全部文本token
|
||||
x_lens: torch.LongTensor,
|
||||
prompts: torch.LongTensor, ####参考音频token
|
||||
bert_feature: List[torch.LongTensor],
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs,
|
||||
):
|
||||
if prompts is None:
|
||||
print("Warning: Prompt free is not supported batch_infer! switch to naive_infer")
|
||||
return self.infer_panel_naive_batched(
|
||||
x,
|
||||
x_lens,
|
||||
prompts,
|
||||
bert_feature,
|
||||
top_k=top_k,
|
||||
top_p=top_p,
|
||||
early_stop_num=early_stop_num,
|
||||
temperature=temperature,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
max_len = kwargs.get("max_len", x_lens.max())
|
||||
x_list = []
|
||||
for x_item, bert_item in zip(x, bert_feature):
|
||||
# max_len = max(max_len, x_item.shape[0], bert_item.shape[1])
|
||||
x_item = self.ar_text_embedding(x_item.unsqueeze(0))
|
||||
x_item = x_item + self.bert_proj(bert_item.transpose(0, 1).unsqueeze(0))
|
||||
x_item = self.ar_text_position(x_item).squeeze(0)
|
||||
# x_item = F.pad(x_item,(0,0,0,max_len-x_item.shape[0]),value=0) if x_item.shape[0]<max_len else x_item ### padding right
|
||||
x_item = (
|
||||
F.pad(x_item, (0, 0, max_len - x_item.shape[0], 0), value=0) if x_item.shape[0] < max_len else x_item
|
||||
) ### padding left
|
||||
x_list.append(x_item)
|
||||
x: torch.Tensor = torch.stack(x_list, dim=0)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
|
||||
x_len = x.shape[1]
|
||||
stop = False
|
||||
|
||||
k_cache = None
|
||||
v_cache = None
|
||||
################### first step ##########################
|
||||
assert y is not None, "Error: Prompt free is not supported batch_infer!"
|
||||
ref_free = False
|
||||
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_lens = torch.LongTensor([y_emb.shape[1]] * y_emb.shape[0]).to(x.device)
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
|
||||
##### create mask #####
|
||||
bsz = x.shape[0]
|
||||
src_len = x_len + y_len
|
||||
y_paddind_mask = make_pad_mask_left(y_lens, y_len)
|
||||
x_paddind_mask = make_pad_mask_left(x_lens, max_len)
|
||||
|
||||
# (bsz, x_len + y_len)
|
||||
padding_mask = torch.concat([x_paddind_mask, y_paddind_mask], dim=1)
|
||||
|
||||
x_mask = F.pad(
|
||||
torch.zeros(x_len, x_len, dtype=torch.bool, device=x.device),
|
||||
(0, y_len),
|
||||
value=True,
|
||||
)
|
||||
|
||||
y_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool, device=x.device), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
|
||||
causal_mask = torch.concat([x_mask, y_mask], dim=0).view(1, src_len, src_len).repeat(bsz, 1, 1).to(x.device)
|
||||
# padding_mask = padding_mask.unsqueeze(1) * padding_mask.unsqueeze(2) ### [b, x+y, x+y]
|
||||
### 上面是错误的,会导致padding的token被"看见"
|
||||
|
||||
# 正确的padding_mask应该是:
|
||||
# | pad_len | x_len | y_len |
|
||||
# [[PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
|
||||
|
||||
padding_mask = padding_mask.view(bsz, 1, src_len).repeat(1, src_len, 1)
|
||||
|
||||
attn_mask: torch.Tensor = causal_mask.logical_or(padding_mask)
|
||||
attn_mask = attn_mask.unsqueeze(1).expand(-1, self.num_head, -1, -1).bool()
|
||||
|
||||
# 正确的attn_mask应该是这样的:
|
||||
# | pad_len | x_len | y_len |
|
||||
# [[PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS], 前3行按理说也应该被mask掉,但是为了防止计算attention时不出现nan,还是保留了,不影响结果
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, EOS, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, EOS, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, EOS],
|
||||
# [PAD, PAD, PAD, 1, 2, 3, 4, 5, 6]]
|
||||
|
||||
###### decode #####
|
||||
y_list = [None] * y.shape[0]
|
||||
batch_idx_map = list(range(y.shape[0]))
|
||||
idx_list = [None] * y.shape[0]
|
||||
for idx in tqdm(range(1500)):
|
||||
if idx == 0:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, attn_mask, None)
|
||||
else:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache, attn_mask)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
|
||||
if idx == 0:
|
||||
attn_mask = F.pad(attn_mask[:, :, -1].unsqueeze(-2), (0, 1), value=False)
|
||||
logits = logits[:, :-1]
|
||||
else:
|
||||
attn_mask = F.pad(attn_mask, (0, 1), value=False)
|
||||
|
||||
samples = sample(
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
||||
)[0]
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
####### 移除batch中已经生成完毕的序列,进一步优化计算量
|
||||
tokens = torch.argmax(logits, dim=-1)
|
||||
reserved_idx_of_batch_for_y = None
|
||||
if (self.EOS in samples[:, 0]) or (self.EOS in tokens): ###如果生成到EOS,则停止
|
||||
l1 = samples[:, 0] == self.EOS
|
||||
l2 = tokens == self.EOS
|
||||
l = l1.logical_or(l2)
|
||||
removed_idx_of_batch_for_y = torch.where(l == True)[0].tolist()
|
||||
reserved_idx_of_batch_for_y = torch.where(l == False)[0]
|
||||
# batch_indexs = torch.tensor(batch_idx_map, device=y.device)[removed_idx_of_batch_for_y]
|
||||
for i in removed_idx_of_batch_for_y:
|
||||
batch_index = batch_idx_map[i]
|
||||
idx_list[batch_index] = idx
|
||||
y_list[batch_index] = y[i, :-1]
|
||||
|
||||
batch_idx_map = [batch_idx_map[i] for i in reserved_idx_of_batch_for_y.tolist()]
|
||||
|
||||
# 只保留batch中未生成完毕的序列
|
||||
if reserved_idx_of_batch_for_y is not None:
|
||||
# index = torch.LongTensor(batch_idx_map).to(y.device)
|
||||
y = torch.index_select(y, dim=0, index=reserved_idx_of_batch_for_y)
|
||||
attn_mask = torch.index_select(attn_mask, dim=0, index=reserved_idx_of_batch_for_y)
|
||||
if k_cache is not None:
|
||||
for i in range(len(k_cache)):
|
||||
k_cache[i] = torch.index_select(k_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
||||
v_cache[i] = torch.index_select(v_cache[i], dim=0, index=reserved_idx_of_batch_for_y)
|
||||
|
||||
if (early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num) or idx == 1499:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
for i, batch_index in enumerate(batch_idx_map):
|
||||
batch_index = batch_idx_map[i]
|
||||
idx_list[batch_index] = idx
|
||||
y_list[batch_index] = y[i, :-1]
|
||||
|
||||
if None not in idx_list:
|
||||
stop = True
|
||||
|
||||
if stop:
|
||||
if y.shape[1] == 0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
|
||||
####################### update next step ###################################
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
|
||||
:, y_len + idx
|
||||
].to(dtype=y_emb.dtype, device=y_emb.device)
|
||||
|
||||
if None in idx_list:
|
||||
for i in range(x.shape[0]):
|
||||
if idx_list[i] is None:
|
||||
idx_list[i] = 1500 - 1 ###如果没有生成到EOS,就用最大长度代替
|
||||
|
||||
if ref_free:
|
||||
return y_list, [0] * x.shape[0]
|
||||
# print(idx_list)
|
||||
return y_list, idx_list
|
||||
|
||||
def infer_panel_naive_batched(
|
||||
self,
|
||||
x: List[torch.LongTensor], #####全部文本token
|
||||
x_lens: torch.LongTensor,
|
||||
prompts: torch.LongTensor, ####参考音频token
|
||||
bert_feature: List[torch.LongTensor],
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs,
|
||||
):
|
||||
y_list = []
|
||||
idx_list = []
|
||||
for i in range(len(x)):
|
||||
y, idx = self.infer_panel_naive(
|
||||
x[i].unsqueeze(0),
|
||||
x_lens[i],
|
||||
prompts[i].unsqueeze(0) if prompts is not None else None,
|
||||
bert_feature[i].unsqueeze(0),
|
||||
top_k,
|
||||
top_p,
|
||||
early_stop_num,
|
||||
temperature,
|
||||
repetition_penalty,
|
||||
**kwargs,
|
||||
)
|
||||
y_list.append(y[0])
|
||||
idx_list.append(idx)
|
||||
|
||||
return y_list, idx_list
|
||||
|
||||
def infer_panel_naive(
|
||||
self,
|
||||
x: torch.LongTensor, #####全部文本token
|
||||
x_lens: torch.LongTensor,
|
||||
prompts: torch.LongTensor, ####参考音频token
|
||||
bert_feature: torch.LongTensor,
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs,
|
||||
):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
x = self.ar_text_position(x)
|
||||
|
||||
# AR Decoder
|
||||
y = prompts
|
||||
|
||||
x_len = x.shape[1]
|
||||
x_attn_mask = torch.zeros((x_len, x_len), dtype=torch.bool)
|
||||
stop = False
|
||||
# print(1111111,self.num_layers)
|
||||
|
||||
k_cache = None
|
||||
v_cache = None
|
||||
################### first step ##########################
|
||||
if y is not None:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
y_len = y_emb.shape[1]
|
||||
prefix_len = y.shape[1]
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
ref_free = False
|
||||
else:
|
||||
y_emb = None
|
||||
y_len = 0
|
||||
prefix_len = 0
|
||||
y_pos = None
|
||||
xy_pos = x
|
||||
y = torch.zeros(x.shape[0], 0, dtype=torch.int, device=x.device)
|
||||
ref_free = True
|
||||
|
||||
bsz = x.shape[0]
|
||||
src_len = x_len + y_len
|
||||
x_attn_mask_pad = F.pad(
|
||||
x_attn_mask,
|
||||
(0, y_len), ###xx的纯0扩展到xx纯0+xy纯1,(x,x+y)
|
||||
value=True,
|
||||
)
|
||||
y_attn_mask = F.pad( ###yy的右上1扩展到左边xy的0,(y,x+y)
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = (
|
||||
torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
||||
.unsqueeze(0)
|
||||
.expand(bsz * self.num_head, -1, -1)
|
||||
.view(bsz, self.num_head, src_len, src_len)
|
||||
.to(device=x.device, dtype=torch.bool)
|
||||
)
|
||||
|
||||
for idx in tqdm(range(1500)):
|
||||
if xy_attn_mask is not None:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.process_prompt(xy_pos, xy_attn_mask, None)
|
||||
else:
|
||||
xy_dec, k_cache, v_cache = self.t2s_transformer.decode_next_token(xy_pos, k_cache, v_cache)
|
||||
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
|
||||
if idx == 0:
|
||||
xy_attn_mask = None
|
||||
if idx < 11: ###至少预测出10个token不然不给停止(0.4s)
|
||||
logits = logits[:, :-1]
|
||||
|
||||
samples = sample(
|
||||
logits, y, top_k=top_k, top_p=top_p, repetition_penalty=repetition_penalty, temperature=temperature
|
||||
)[0]
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
print("use early stop num:", early_stop_num)
|
||||
stop = True
|
||||
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
stop = True
|
||||
if stop:
|
||||
if y.shape[1] == 0:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
print("bad zero prediction")
|
||||
print(f"T2S Decoding EOS [{prefix_len} -> {y.shape[1]}]")
|
||||
break
|
||||
|
||||
####################### update next step ###################################
|
||||
y_emb = self.ar_audio_embedding(y[:, -1:])
|
||||
xy_pos = y_emb * self.ar_audio_position.x_scale + self.ar_audio_position.alpha * self.ar_audio_position.pe[
|
||||
:, y_len + idx
|
||||
].to(dtype=y_emb.dtype, device=y_emb.device)
|
||||
|
||||
if ref_free:
|
||||
return y[:, :-1], 0
|
||||
return y[:, :-1], idx
|
||||
|
||||
def infer_panel(
|
||||
self,
|
||||
x: torch.LongTensor, #####全部文本token
|
||||
x_lens: torch.LongTensor,
|
||||
prompts: torch.LongTensor, ####参考音频token
|
||||
bert_feature: torch.LongTensor,
|
||||
top_k: int = -100,
|
||||
top_p: int = 100,
|
||||
early_stop_num: int = -1,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
**kwargs,
|
||||
):
|
||||
return self.infer_panel_naive(
|
||||
x, x_lens, prompts, bert_feature, top_k, top_p, early_stop_num, temperature, repetition_penalty, **kwargs
|
||||
)
|
||||
394
only_tts/src/AR/models/t2s_model_onnx.py
Normal file
394
only_tts/src/AR/models/t2s_model_onnx.py
Normal file
@ -0,0 +1,394 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/t2s_model.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
from torchmetrics.classification import MulticlassAccuracy
|
||||
|
||||
from AR.modules.embedding_onnx import SinePositionalEmbedding, TokenEmbedding
|
||||
from AR.modules.transformer_onnx import LayerNorm, TransformerEncoder, TransformerEncoderLayer
|
||||
|
||||
default_config = {
|
||||
"embedding_dim": 512,
|
||||
"hidden_dim": 512,
|
||||
"num_head": 8,
|
||||
"num_layers": 12,
|
||||
"num_codebook": 8,
|
||||
"p_dropout": 0.0,
|
||||
"vocab_size": 1024 + 1,
|
||||
"phoneme_vocab_size": 512,
|
||||
"EOS": 1024,
|
||||
}
|
||||
|
||||
inf_tensor_value = torch.FloatTensor([-float("Inf")]).float()
|
||||
|
||||
|
||||
def logits_to_probs(
|
||||
logits,
|
||||
previous_tokens=None,
|
||||
temperature: float = 1.0,
|
||||
top_k=None,
|
||||
top_p=None,
|
||||
repetition_penalty: float = 1.0,
|
||||
):
|
||||
previous_tokens = previous_tokens.squeeze()
|
||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||
previous_tokens = previous_tokens.long()
|
||||
score = torch.gather(logits, dim=0, index=previous_tokens)
|
||||
score = torch.where(
|
||||
score < 0,
|
||||
score * repetition_penalty,
|
||||
score / repetition_penalty,
|
||||
)
|
||||
logits.scatter_(dim=0, index=previous_tokens, src=score)
|
||||
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cum_probs = torch.cumsum(
|
||||
torch.nn.functional.softmax(
|
||||
sorted_logits,
|
||||
dim=-1,
|
||||
),
|
||||
dim=-1,
|
||||
)
|
||||
sorted_indices_to_remove = cum_probs > top_p
|
||||
sorted_indices_to_remove[0] = False # keep at least one option
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
dim=0,
|
||||
index=sorted_indices,
|
||||
src=sorted_indices_to_remove,
|
||||
)
|
||||
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
||||
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, top_k)
|
||||
pivot = v.select(-1, -1).unsqueeze(-1)
|
||||
logits = torch.where(logits < pivot, inf_tensor_value, logits)
|
||||
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
return probs
|
||||
|
||||
|
||||
def multinomial_sample_one_no_sync(
|
||||
probs_sort,
|
||||
): # Does multinomial sampling without a cuda synchronization
|
||||
q = torch.randn_like(probs_sort)
|
||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||
|
||||
|
||||
def sample(
|
||||
logits,
|
||||
previous_tokens,
|
||||
**sampling_kwargs,
|
||||
):
|
||||
probs = logits_to_probs(
|
||||
logits=logits,
|
||||
previous_tokens=previous_tokens,
|
||||
**sampling_kwargs,
|
||||
)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
||||
|
||||
class OnnxEncoder(nn.Module):
|
||||
def __init__(self, ar_text_embedding, bert_proj, ar_text_position):
|
||||
super().__init__()
|
||||
self.ar_text_embedding = ar_text_embedding
|
||||
self.bert_proj = bert_proj
|
||||
self.ar_text_position = ar_text_position
|
||||
|
||||
def forward(self, x, bert_feature):
|
||||
x = self.ar_text_embedding(x)
|
||||
x = x + self.bert_proj(bert_feature.transpose(1, 2))
|
||||
return self.ar_text_position(x)
|
||||
|
||||
|
||||
class T2SFirstStageDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
ar_audio_embedding,
|
||||
ar_audio_position,
|
||||
h,
|
||||
ar_predict_layer,
|
||||
loss_fct,
|
||||
ar_accuracy_metric,
|
||||
top_k,
|
||||
early_stop_num,
|
||||
num_layers,
|
||||
):
|
||||
super().__init__()
|
||||
self.ar_audio_embedding = ar_audio_embedding
|
||||
self.ar_audio_position = ar_audio_position
|
||||
self.h = h
|
||||
self.ar_predict_layer = ar_predict_layer
|
||||
self.loss_fct = loss_fct
|
||||
self.ar_accuracy_metric = ar_accuracy_metric
|
||||
self.top_k = top_k
|
||||
self.early_stop_num = early_stop_num
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(self, x, prompt):
|
||||
y = prompt
|
||||
x_example = x[:, :, 0] * 0.0
|
||||
# N, 1, 512
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": None,
|
||||
"v": None,
|
||||
"y_emb": None,
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
|
||||
y_example = y_pos[:, :, 0] * 0.0
|
||||
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example).bool()
|
||||
y_attn_mask = torch.ones_like(torch.matmul(y_example.transpose(0, 1), y_example), dtype=torch.int64)
|
||||
y_attn_mask = torch.cumsum(y_attn_mask, dim=1) - torch.cumsum(
|
||||
torch.ones_like(
|
||||
y_example.transpose(0, 1),
|
||||
dtype=torch.int64,
|
||||
),
|
||||
dim=0,
|
||||
)
|
||||
y_attn_mask = y_attn_mask > 0
|
||||
|
||||
x_y_pad = torch.matmul(x_example.transpose(0, 1), y_example).bool()
|
||||
y_x_pad = torch.matmul(y_example.transpose(0, 1), x_example).bool()
|
||||
x_attn_mask_pad = torch.cat([x_attn_mask, torch.ones_like(x_y_pad)], dim=1)
|
||||
y_attn_mask = torch.cat([y_x_pad, y_attn_mask], dim=1)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
||||
cache["k"] = (
|
||||
torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))
|
||||
.unsqueeze(1)
|
||||
.repeat(self.num_layers, 1, 1, 1)
|
||||
)
|
||||
cache["v"] = (
|
||||
torch.matmul(x_attn_mask_pad[0].float().unsqueeze(-1), torch.zeros((1, 512)))
|
||||
.unsqueeze(1)
|
||||
.repeat(self.num_layers, 1, 1, 1)
|
||||
)
|
||||
|
||||
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
return y, cache["k"], cache["v"], cache["y_emb"], x_example
|
||||
|
||||
|
||||
class T2SStageDecoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
ar_audio_embedding,
|
||||
ar_audio_position,
|
||||
h,
|
||||
ar_predict_layer,
|
||||
loss_fct,
|
||||
ar_accuracy_metric,
|
||||
top_k,
|
||||
early_stop_num,
|
||||
num_layers,
|
||||
):
|
||||
super().__init__()
|
||||
self.ar_audio_embedding = ar_audio_embedding
|
||||
self.ar_audio_position = ar_audio_position
|
||||
self.h = h
|
||||
self.ar_predict_layer = ar_predict_layer
|
||||
self.loss_fct = loss_fct
|
||||
self.ar_accuracy_metric = ar_accuracy_metric
|
||||
self.top_k = top_k
|
||||
self.early_stop_num = early_stop_num
|
||||
self.num_layers = num_layers
|
||||
|
||||
def forward(self, y, k, v, y_emb, x_example):
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": torch.nn.functional.pad(k, (0, 0, 0, 0, 0, 1)),
|
||||
"v": torch.nn.functional.pad(v, (0, 0, 0, 0, 0, 1)),
|
||||
"y_emb": y_emb,
|
||||
"first_infer": 0,
|
||||
"stage": 0,
|
||||
}
|
||||
|
||||
y_emb = torch.cat(
|
||||
[
|
||||
cache["y_emb"],
|
||||
self.ar_audio_embedding(y[:, -1:]),
|
||||
],
|
||||
1,
|
||||
)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
|
||||
xy_pos = y_pos[:, -1:]
|
||||
|
||||
y_example = y_pos[:, :, 0] * 0.0
|
||||
|
||||
xy_attn_mask = torch.cat([x_example, y_example], dim=1)
|
||||
xy_attn_mask = torch.zeros_like(xy_attn_mask, dtype=torch.bool)
|
||||
|
||||
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = sample(logits[0], y, top_k=self.top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
|
||||
return y, cache["k"], cache["v"], cache["y_emb"], logits, samples
|
||||
|
||||
|
||||
class Text2SemanticDecoder(nn.Module):
|
||||
def __init__(self, config, norm_first=False, top_k=3):
|
||||
super(Text2SemanticDecoder, self).__init__()
|
||||
self.model_dim = config["model"]["hidden_dim"]
|
||||
self.embedding_dim = config["model"]["embedding_dim"]
|
||||
self.num_head = config["model"]["head"]
|
||||
self.num_layers = config["model"]["n_layer"]
|
||||
self.norm_first = norm_first
|
||||
self.vocab_size = config["model"]["vocab_size"]
|
||||
self.phoneme_vocab_size = config["model"]["phoneme_vocab_size"]
|
||||
self.p_dropout = float(config["model"]["dropout"])
|
||||
self.EOS = config["model"]["EOS"]
|
||||
self.norm_first = norm_first
|
||||
assert self.EOS == self.vocab_size - 1
|
||||
self.bert_proj = nn.Linear(1024, self.embedding_dim)
|
||||
self.ar_text_embedding = TokenEmbedding(self.embedding_dim, self.phoneme_vocab_size, self.p_dropout)
|
||||
self.ar_text_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
||||
self.ar_audio_embedding = TokenEmbedding(self.embedding_dim, self.vocab_size, self.p_dropout)
|
||||
self.ar_audio_position = SinePositionalEmbedding(self.embedding_dim, dropout=0.1, scale=False, alpha=True)
|
||||
self.h = TransformerEncoder(
|
||||
TransformerEncoderLayer(
|
||||
d_model=self.model_dim,
|
||||
nhead=self.num_head,
|
||||
dim_feedforward=self.model_dim * 4,
|
||||
dropout=0.1,
|
||||
batch_first=True,
|
||||
norm_first=norm_first,
|
||||
),
|
||||
num_layers=self.num_layers,
|
||||
norm=LayerNorm(self.model_dim) if norm_first else None,
|
||||
)
|
||||
self.ar_predict_layer = nn.Linear(self.model_dim, self.vocab_size, bias=False)
|
||||
self.loss_fct = nn.CrossEntropyLoss(reduction="sum")
|
||||
self.ar_accuracy_metric = MulticlassAccuracy(
|
||||
self.vocab_size,
|
||||
top_k=top_k,
|
||||
average="micro",
|
||||
multidim_average="global",
|
||||
ignore_index=self.EOS,
|
||||
)
|
||||
self.top_k = torch.LongTensor([1])
|
||||
self.early_stop_num = torch.LongTensor([-1])
|
||||
|
||||
def init_onnx(self):
|
||||
self.onnx_encoder = OnnxEncoder(self.ar_text_embedding, self.bert_proj, self.ar_text_position)
|
||||
self.first_stage_decoder = T2SFirstStageDecoder(
|
||||
self.ar_audio_embedding,
|
||||
self.ar_audio_position,
|
||||
self.h,
|
||||
self.ar_predict_layer,
|
||||
self.loss_fct,
|
||||
self.ar_accuracy_metric,
|
||||
self.top_k,
|
||||
self.early_stop_num,
|
||||
self.num_layers,
|
||||
)
|
||||
self.stage_decoder = T2SStageDecoder(
|
||||
self.ar_audio_embedding,
|
||||
self.ar_audio_position,
|
||||
self.h,
|
||||
self.ar_predict_layer,
|
||||
self.loss_fct,
|
||||
self.ar_accuracy_metric,
|
||||
self.top_k,
|
||||
self.early_stop_num,
|
||||
self.num_layers,
|
||||
)
|
||||
|
||||
def forward(self, x, prompts, bert_feature):
|
||||
early_stop_num = self.early_stop_num
|
||||
prefix_len = prompts.shape[1]
|
||||
|
||||
x = self.onnx_encoder(x, bert_feature)
|
||||
y, k, v, y_emb, stage, x_example = self.first_stage_decoder(x, prompts)
|
||||
|
||||
stop = False
|
||||
for idx in range(1, 1500):
|
||||
enco = self.stage_decoder(y, k, v, y_emb, stage, x_example)
|
||||
y, k, v, y_emb, stage, logits, samples = enco
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
stop = True
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
stop = True
|
||||
if stop:
|
||||
break
|
||||
y[0, -1] = 0
|
||||
return y, idx
|
||||
|
||||
def infer(self, x, prompts, bert_feature):
|
||||
top_k = self.top_k
|
||||
early_stop_num = self.early_stop_num
|
||||
|
||||
x = self.onnx_encoder(x, bert_feature)
|
||||
|
||||
y = prompts
|
||||
prefix_len = y.shape[1]
|
||||
x_len = x.shape[1]
|
||||
x_example = x[:, :, 0] * 0.0
|
||||
x_attn_mask = torch.matmul(x_example.transpose(0, 1), x_example)
|
||||
x_attn_mask = torch.zeros_like(x_attn_mask, dtype=torch.bool)
|
||||
|
||||
stop = False
|
||||
cache = {
|
||||
"all_stage": self.num_layers,
|
||||
"k": [None] * self.num_layers,
|
||||
"v": [None] * self.num_layers,
|
||||
"y_emb": None,
|
||||
"first_infer": 1,
|
||||
"stage": 0,
|
||||
}
|
||||
for idx in range(1500):
|
||||
if cache["first_infer"] == 1:
|
||||
y_emb = self.ar_audio_embedding(y)
|
||||
else:
|
||||
y_emb = torch.cat([cache["y_emb"], self.ar_audio_embedding(y[:, -1:])], 1)
|
||||
cache["y_emb"] = y_emb
|
||||
y_pos = self.ar_audio_position(y_emb)
|
||||
if cache["first_infer"] == 1:
|
||||
xy_pos = torch.concat([x, y_pos], dim=1)
|
||||
else:
|
||||
xy_pos = y_pos[:, -1:]
|
||||
y_len = y_pos.shape[1]
|
||||
if cache["first_infer"] == 1:
|
||||
x_attn_mask_pad = F.pad(x_attn_mask, (0, y_len), value=True)
|
||||
y_attn_mask = F.pad(
|
||||
torch.triu(torch.ones(y_len, y_len, dtype=torch.bool), diagonal=1),
|
||||
(x_len, 0),
|
||||
value=False,
|
||||
)
|
||||
xy_attn_mask = torch.concat([x_attn_mask_pad, y_attn_mask], dim=0)
|
||||
else:
|
||||
xy_attn_mask = torch.zeros((1, x_len + y_len), dtype=torch.bool)
|
||||
xy_dec = self.h(xy_pos, mask=xy_attn_mask, cache=cache)
|
||||
logits = self.ar_predict_layer(xy_dec[:, -1])
|
||||
samples = sample(logits[0], y, top_k=top_k, top_p=1.0, repetition_penalty=1.35)[0].unsqueeze(0)
|
||||
if early_stop_num != -1 and (y.shape[1] - prefix_len) > early_stop_num:
|
||||
stop = True
|
||||
if torch.argmax(logits, dim=-1)[0] == self.EOS or samples[0, 0] == self.EOS:
|
||||
stop = True
|
||||
if stop:
|
||||
if prompts.shape[1] == y.shape[1]:
|
||||
y = torch.concat([y, torch.zeros_like(samples)], dim=1)
|
||||
break
|
||||
y = torch.concat([y, samples], dim=1)
|
||||
cache["first_infer"] = 0
|
||||
return y, idx
|
||||
282
only_tts/src/AR/models/utils.py
Normal file
282
only_tts/src/AR/models/utils.py
Normal file
@ -0,0 +1,282 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/models/utils.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn.functional as F
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def make_pad_mask(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
lengths:
|
||||
A 1-D tensor containing sentence lengths.
|
||||
max_len:
|
||||
The length of masks.
|
||||
Returns:
|
||||
Return a 2-D bool tensor, where masked positions
|
||||
are filled with `True` and non-masked positions are
|
||||
filled with `False`.
|
||||
|
||||
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
||||
#>>> make_pad_mask(lengths)
|
||||
tensor([[False, True, True, True, True],
|
||||
[False, False, False, True, True],
|
||||
[False, False, True, True, True],
|
||||
[False, False, False, False, False]])
|
||||
"""
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
max_len = max(max_len, lengths.max())
|
||||
n = lengths.size(0)
|
||||
seq_range = torch.arange(0, max_len, device=lengths.device)
|
||||
expaned_lengths = seq_range.unsqueeze(0).expand(n, max_len)
|
||||
|
||||
return expaned_lengths >= lengths.unsqueeze(-1)
|
||||
|
||||
|
||||
def make_pad_mask_left(lengths: torch.Tensor, max_len: int = 0) -> torch.Tensor:
|
||||
"""
|
||||
Args:
|
||||
lengths:
|
||||
A 1-D tensor containing sentence lengths.
|
||||
max_len:
|
||||
The length of masks.
|
||||
Returns:
|
||||
Return a 2-D bool tensor, where masked positions
|
||||
are filled with `True` and non-masked positions are
|
||||
filled with `False`.
|
||||
|
||||
#>>> lengths = torch.tensor([1, 3, 2, 5])
|
||||
#>>> make_pad_mask(lengths)
|
||||
tensor(
|
||||
[
|
||||
[True, True, False],
|
||||
[True, False, False],
|
||||
[True, True, False],
|
||||
...
|
||||
]
|
||||
)
|
||||
"""
|
||||
assert lengths.ndim == 1, lengths.ndim
|
||||
max_len = max(max_len, lengths.max())
|
||||
n = lengths.size(0)
|
||||
seq_range = torch.arange(0, max_len, device=lengths.device)
|
||||
expaned_lengths = seq_range.unsqueeze(0).repeat(n, 1)
|
||||
expaned_lengths -= (max_len - lengths).unsqueeze(-1)
|
||||
|
||||
return expaned_lengths < 0
|
||||
|
||||
|
||||
# https://github.com/microsoft/unilm/blob/master/xtune/src/transformers/modeling_utils.py
|
||||
def top_k_top_p_filtering(
|
||||
logits,
|
||||
top_k=0,
|
||||
top_p=1.0,
|
||||
filter_value=-float("Inf"),
|
||||
min_tokens_to_keep=1,
|
||||
):
|
||||
"""Filter a distribution of logits using top-k and/or nucleus (top-p) filtering
|
||||
Args:
|
||||
logits: logits distribution shape (batch size, vocabulary size)
|
||||
if top_k > 0: keep only top k tokens with highest probability (top-k filtering).
|
||||
if top_p < 1.0: keep the top tokens with cumulative probability >= top_p (nucleus filtering).
|
||||
Nucleus filtering is described in Holtzman et al. (http://arxiv.org/abs/1904.09751)
|
||||
Make sure we keep at least min_tokens_to_keep per batch example in the output
|
||||
From: https://gist.github.com/thomwolf/1a5a29f6962089e871b94cbd09daf317
|
||||
"""
|
||||
if top_k > 0:
|
||||
top_k = min(max(top_k, min_tokens_to_keep), logits.size(-1)) # Safety check
|
||||
# Remove all tokens with a probability less than the last token of the top-k
|
||||
indices_to_remove = logits < torch.topk(logits, top_k)[0][..., -1, None]
|
||||
logits[indices_to_remove] = filter_value
|
||||
|
||||
if top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cumulative_probs = torch.cumsum(F.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
|
||||
# Remove tokens with cumulative probability above the threshold (token with 0 are kept)
|
||||
sorted_indices_to_remove = cumulative_probs > top_p
|
||||
if min_tokens_to_keep > 1:
|
||||
# Keep at least min_tokens_to_keep (set to min_tokens_to_keep-1 because we add the first one below)
|
||||
sorted_indices_to_remove[..., :min_tokens_to_keep] = 0
|
||||
# Shift the indices to the right to keep also the first token above the threshold
|
||||
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
||||
sorted_indices_to_remove[..., 0] = 0
|
||||
|
||||
# scatter sorted tensors to original indexing
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
|
||||
logits[indices_to_remove] = filter_value
|
||||
return logits
|
||||
|
||||
|
||||
def topk_sampling(logits, top_k=10, top_p=1.0, temperature=1.0):
|
||||
# temperature: (`optional`) float
|
||||
# The value used to module the next token probabilities. Must be strictly positive. Default to 1.0.
|
||||
# top_k: (`optional`) int
|
||||
# The number of highest probability vocabulary tokens to keep for top-k-filtering. Between 1 and infinity. Default to 50.
|
||||
# top_p: (`optional`) float
|
||||
# The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. Must be between 0 and 1. Default to 1.
|
||||
|
||||
# Temperature (higher temperature => more likely to sample low probability tokens)
|
||||
if temperature != 1.0:
|
||||
logits = logits / temperature
|
||||
# Top-p/top-k filtering
|
||||
logits = top_k_top_p_filtering(logits, top_k=top_k, top_p=top_p)
|
||||
# Sample
|
||||
token = torch.multinomial(F.softmax(logits, dim=-1), num_samples=1)
|
||||
return token
|
||||
|
||||
|
||||
from typing import Optional
|
||||
|
||||
|
||||
def multinomial_sample_one_no_sync(
|
||||
probs_sort,
|
||||
): # Does multinomial sampling without a cuda synchronization
|
||||
q = torch.empty_like(probs_sort).exponential_(1)
|
||||
return torch.argmax(probs_sort / q, dim=-1, keepdim=True).to(dtype=torch.int)
|
||||
|
||||
|
||||
def logits_to_probs(
|
||||
logits,
|
||||
previous_tokens: Optional[torch.Tensor] = None,
|
||||
temperature: float = 1.0,
|
||||
top_k: Optional[int] = None,
|
||||
top_p: Optional[int] = None,
|
||||
repetition_penalty: float = 1.0,
|
||||
):
|
||||
# if previous_tokens is not None:
|
||||
# previous_tokens = previous_tokens.squeeze()
|
||||
# print(logits.shape,previous_tokens.shape)
|
||||
# pdb.set_trace()
|
||||
if previous_tokens is not None and repetition_penalty != 1.0:
|
||||
previous_tokens = previous_tokens.long()
|
||||
score = torch.gather(logits, dim=1, index=previous_tokens)
|
||||
score = torch.where(
|
||||
score < 0,
|
||||
score * repetition_penalty,
|
||||
score / repetition_penalty,
|
||||
)
|
||||
logits.scatter_(dim=1, index=previous_tokens, src=score)
|
||||
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(logits, descending=True)
|
||||
cum_probs = torch.cumsum(torch.nn.functional.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
sorted_indices_to_remove = cum_probs > top_p
|
||||
sorted_indices_to_remove[:, 0] = False # keep at least one option
|
||||
indices_to_remove = sorted_indices_to_remove.scatter(
|
||||
dim=1,
|
||||
index=sorted_indices,
|
||||
src=sorted_indices_to_remove,
|
||||
)
|
||||
logits = logits.masked_fill(indices_to_remove, -float("Inf"))
|
||||
|
||||
logits = logits / max(temperature, 1e-5)
|
||||
|
||||
if top_k is not None:
|
||||
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
|
||||
pivot = v[:, -1].unsqueeze(-1)
|
||||
logits = torch.where(logits < pivot, -float("Inf"), logits)
|
||||
|
||||
probs = torch.nn.functional.softmax(logits, dim=-1)
|
||||
return probs
|
||||
|
||||
|
||||
def sample(
|
||||
logits,
|
||||
previous_tokens: Optional[torch.Tensor] = None,
|
||||
**sampling_kwargs,
|
||||
) -> Tuple[torch.Tensor, torch.Tensor]:
|
||||
probs = logits_to_probs(logits=logits, previous_tokens=previous_tokens, **sampling_kwargs)
|
||||
idx_next = multinomial_sample_one_no_sync(probs)
|
||||
return idx_next, probs
|
||||
|
||||
|
||||
def dpo_loss(
|
||||
policy_chosen_logps: torch.FloatTensor,
|
||||
policy_rejected_logps: torch.FloatTensor,
|
||||
reference_chosen_logps: torch.FloatTensor,
|
||||
reference_rejected_logps: torch.FloatTensor,
|
||||
beta: float,
|
||||
reference_free: bool = False,
|
||||
) -> Tuple[torch.FloatTensor, torch.FloatTensor, torch.FloatTensor]:
|
||||
pi_logratios = policy_chosen_logps - policy_rejected_logps
|
||||
ref_logratios = reference_chosen_logps - reference_rejected_logps
|
||||
|
||||
if reference_free:
|
||||
ref_logratios = 0
|
||||
|
||||
logits = pi_logratios - ref_logratios
|
||||
|
||||
losses = -F.logsigmoid(beta * logits)
|
||||
chosen_rewards = beta * (policy_chosen_logps - reference_chosen_logps).detach()
|
||||
rejected_rewards = beta * (policy_rejected_logps - reference_rejected_logps).detach()
|
||||
|
||||
return losses.mean(), chosen_rewards, rejected_rewards
|
||||
|
||||
|
||||
def get_batch_logps(
|
||||
logits_target: torch.FloatTensor,
|
||||
logits_reject: torch.FloatTensor,
|
||||
labels_target: torch.LongTensor,
|
||||
labels_reject: torch.LongTensor,
|
||||
average_log_prob: bool = False,
|
||||
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
||||
# dummy token; we'll ignore the losses on these tokens later
|
||||
|
||||
per_token_logps_target = torch.gather(
|
||||
logits_target.log_softmax(-1), dim=2, index=labels_target.unsqueeze(2)
|
||||
).squeeze(2)
|
||||
per_token_logps_reject = torch.gather(
|
||||
logits_reject.log_softmax(-1), dim=2, index=labels_reject.unsqueeze(2)
|
||||
).squeeze(2)
|
||||
|
||||
return per_token_logps_target.sum(-1), per_token_logps_reject.sum(-1)
|
||||
|
||||
|
||||
def make_reject_y(y_o, y_lens):
|
||||
def repeat_P(y):
|
||||
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
|
||||
pre = y[: range_idx[0]]
|
||||
shf = y[range_idx[1] :]
|
||||
range_text = y[range_idx[0] : range_idx[1]]
|
||||
new_y = torch.cat([pre, range_text, range_text, shf])
|
||||
return new_y
|
||||
|
||||
def lost_P(y):
|
||||
range_idx, _ = torch.randint(0, len(y), size=(2,)).sort()
|
||||
pre = y[: range_idx[0]]
|
||||
shf = y[range_idx[1] :]
|
||||
range_text = y[range_idx[0] : range_idx[1]]
|
||||
new_y = torch.cat([pre, shf])
|
||||
return new_y
|
||||
|
||||
bs = len(y_lens)
|
||||
reject_y = []
|
||||
reject_y_lens = []
|
||||
for b in range(bs):
|
||||
process_item_idx = torch.randint(0, 1, size=(1,))[0]
|
||||
if process_item_idx == 0:
|
||||
new_y = repeat_P(y_o[b])
|
||||
reject_y.append(new_y)
|
||||
reject_y_lens.append(len(new_y))
|
||||
elif process_item_idx == 1:
|
||||
new_y = lost_P(y_o[b])
|
||||
reject_y.append(new_y)
|
||||
reject_y_lens.append(len(new_y))
|
||||
max_length = max(reject_y_lens)
|
||||
for b in range(bs):
|
||||
pad_length = max_length - reject_y_lens[b]
|
||||
reject_y[b] = torch.cat([reject_y[b], torch.zeros(pad_length, dtype=y_o.dtype, device=y_o.device)], dim=0)
|
||||
|
||||
reject_y = torch.stack(reject_y, dim=0)
|
||||
reject_y_lens = torch.tensor(reject_y_lens, device=y_lens.device)
|
||||
|
||||
return reject_y, reject_y_lens
|
||||
0
only_tts/src/AR/modules/__init__.py
Normal file
0
only_tts/src/AR/modules/__init__.py
Normal file
413
only_tts/src/AR/modules/activation.py
Normal file
413
only_tts/src/AR/modules/activation.py
Normal file
@ -0,0 +1,413 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import Linear, Module
|
||||
from torch.nn import functional as F
|
||||
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
||||
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from AR.modules.patched_mha_with_cache import multi_head_attention_forward_patched
|
||||
|
||||
F.multi_head_attention_forward = multi_head_attention_forward_patched
|
||||
|
||||
|
||||
class MultiheadAttention(Module):
|
||||
r"""Allows the model to jointly attend to information
|
||||
from different representation subspaces as described in the paper:
|
||||
`Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
||||
|
||||
Multi-Head Attention is defined as:
|
||||
|
||||
.. math::
|
||||
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
||||
|
||||
where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
||||
|
||||
``forward()`` will use a special optimized implementation if all of the following
|
||||
conditions are met:
|
||||
|
||||
- self attention is being computed (i.e., ``query``, ``key``, and ``value`` are the same tensor. This
|
||||
restriction will be loosened in the future.)
|
||||
- Either autograd is disabled (using ``torch.inference_mode`` or ``torch.no_grad``) or no tensor argument ``requires_grad``
|
||||
- training is disabled (using ``.eval()``)
|
||||
- dropout is 0
|
||||
- ``add_bias_kv`` is ``False``
|
||||
- ``add_zero_attn`` is ``False``
|
||||
- ``batch_first`` is ``True`` and the input is batched
|
||||
- ``kdim`` and ``vdim`` are equal to ``embed_dim``
|
||||
- at most one of ``key_padding_mask`` or ``attn_mask`` is passed
|
||||
- if a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ is passed, neither ``key_padding_mask``
|
||||
nor ``attn_mask`` is passed
|
||||
|
||||
If the optimized implementation is in use, a
|
||||
`NestedTensor <https://pytorch.org/docs/stable/nested.html>`_ can be passed for
|
||||
``query``/``key``/``value`` to represent padding more efficiently than using a
|
||||
padding mask. In this case, a `NestedTensor <https://pytorch.org/docs/stable/nested.html>`_
|
||||
will be returned, and an additional speedup proportional to the fraction of the input
|
||||
that is padding can be expected.
|
||||
|
||||
Args:
|
||||
embed_dim: Total dimension of the model.
|
||||
num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
||||
across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
||||
dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
||||
bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
||||
add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
||||
add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
||||
Default: ``False``.
|
||||
kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
||||
vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
||||
batch_first: If ``True``, then the input and output tensors are provided
|
||||
as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
||||
|
||||
Examples::
|
||||
|
||||
>>> # xdoctest: +SKIP
|
||||
>>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
||||
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
||||
|
||||
"""
|
||||
|
||||
__constants__ = ["batch_first"]
|
||||
bias_k: Optional[torch.Tensor]
|
||||
bias_v: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
linear1_cls=Linear,
|
||||
linear2_cls=Linear,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(MultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.kdim = kdim if kdim is not None else embed_dim
|
||||
self.vdim = vdim if vdim is not None else embed_dim
|
||||
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.batch_first = batch_first
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
||||
|
||||
if add_bias_kv:
|
||||
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
if linear1_cls == Linear:
|
||||
if not self._qkv_same_embed_dim:
|
||||
self.q_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, embed_dim), **factory_kwargs),
|
||||
)
|
||||
self.k_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.kdim), **factory_kwargs),
|
||||
)
|
||||
self.v_proj_weight = Parameter(
|
||||
torch.empty((embed_dim, self.vdim), **factory_kwargs),
|
||||
)
|
||||
self.register_parameter("in_proj_weight", None)
|
||||
else:
|
||||
self.in_proj_weight = Parameter(
|
||||
torch.empty((3 * embed_dim, embed_dim), **factory_kwargs),
|
||||
)
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
self.out_proj = NonDynamicallyQuantizableLinear(
|
||||
embed_dim,
|
||||
embed_dim,
|
||||
bias=bias,
|
||||
**factory_kwargs,
|
||||
)
|
||||
|
||||
self._reset_parameters()
|
||||
else:
|
||||
if not self._qkv_same_embed_dim:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
self.in_proj_linear = linear1_cls(
|
||||
embed_dim,
|
||||
3 * embed_dim,
|
||||
bias=bias,
|
||||
**factory_kwargs,
|
||||
)
|
||||
self.in_proj_weight = self.in_proj_linear.weight
|
||||
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = self.in_proj_linear.bias
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
|
||||
self.out_proj = linear2_cls(
|
||||
embed_dim,
|
||||
embed_dim,
|
||||
bias=bias,
|
||||
**factory_kwargs,
|
||||
)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
self.add_zero_attn = add_zero_attn
|
||||
|
||||
def _reset_parameters(self):
|
||||
if self._qkv_same_embed_dim:
|
||||
xavier_uniform_(self.in_proj_weight)
|
||||
else:
|
||||
xavier_uniform_(self.q_proj_weight)
|
||||
xavier_uniform_(self.k_proj_weight)
|
||||
xavier_uniform_(self.v_proj_weight)
|
||||
|
||||
if self.in_proj_bias is not None:
|
||||
constant_(self.in_proj_bias, 0.0)
|
||||
constant_(self.out_proj.bias, 0.0)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
def __setstate__(self, state):
|
||||
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
||||
if "_qkv_same_embed_dim" not in state:
|
||||
state["_qkv_same_embed_dim"] = True
|
||||
|
||||
super(MultiheadAttention, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
r"""
|
||||
Args:
|
||||
query: Query embeddings of shape :math:`(L, E_q)` for unbatched input, :math:`(L, N, E_q)` when ``batch_first=False``
|
||||
or :math:`(N, L, E_q)` when ``batch_first=True``, where :math:`L` is the target sequence length,
|
||||
:math:`N` is the batch size, and :math:`E_q` is the query embedding dimension ``embed_dim``.
|
||||
Queries are compared against key-value pairs to produce the output.
|
||||
See "Attention Is All You Need" for more details.
|
||||
key: Key embeddings of shape :math:`(S, E_k)` for unbatched input, :math:`(S, N, E_k)` when ``batch_first=False``
|
||||
or :math:`(N, S, E_k)` when ``batch_first=True``, where :math:`S` is the source sequence length,
|
||||
:math:`N` is the batch size, and :math:`E_k` is the key embedding dimension ``kdim``.
|
||||
See "Attention Is All You Need" for more details.
|
||||
value: Value embeddings of shape :math:`(S, E_v)` for unbatched input, :math:`(S, N, E_v)` when
|
||||
``batch_first=False`` or :math:`(N, S, E_v)` when ``batch_first=True``, where :math:`S` is the source
|
||||
sequence length, :math:`N` is the batch size, and :math:`E_v` is the value embedding dimension ``vdim``.
|
||||
See "Attention Is All You Need" for more details.
|
||||
key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
||||
to ignore for the purpose of attention (i.e. treat as "padding"). For unbatched `query`, shape should be :math:`(S)`.
|
||||
Binary and byte masks are supported.
|
||||
For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
||||
the purpose of attention. For a float mask, it will be directly added to the corresponding ``key`` value.
|
||||
need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
||||
Default: ``True``.
|
||||
attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
||||
:math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
||||
:math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
||||
broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
||||
Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
||||
corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
||||
corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
||||
the attention weight.
|
||||
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across
|
||||
heads. Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an
|
||||
effect when ``need_weights=True``. Default: ``True`` (i.e. average weights across heads)
|
||||
|
||||
Outputs:
|
||||
- **attn_output** - Attention outputs of shape :math:`(L, E)` when input is unbatched,
|
||||
:math:`(L, N, E)` when ``batch_first=False`` or :math:`(N, L, E)` when ``batch_first=True``,
|
||||
where :math:`L` is the target sequence length, :math:`N` is the batch size, and :math:`E` is the
|
||||
embedding dimension ``embed_dim``.
|
||||
- **attn_output_weights** - Only returned when ``need_weights=True``. If ``average_attn_weights=True``,
|
||||
returns attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
||||
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
||||
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||||
head of shape :math:`(\text{num\_heads}, L, S)` when input is unbatched or :math:`(N, \text{num\_heads}, L, S)`.
|
||||
|
||||
.. note::
|
||||
`batch_first` argument is ignored for unbatched inputs.
|
||||
"""
|
||||
is_batched = query.dim() == 3
|
||||
if key_padding_mask is not None:
|
||||
_kpm_dtype = key_padding_mask.dtype
|
||||
if _kpm_dtype != torch.bool and not torch.is_floating_point(
|
||||
key_padding_mask,
|
||||
):
|
||||
raise AssertionError("only bool and floating types of key_padding_mask are supported")
|
||||
why_not_fast_path = ""
|
||||
if not is_batched:
|
||||
why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}"
|
||||
elif query is not key or key is not value:
|
||||
# When lifting this restriction, don't forget to either
|
||||
# enforce that the dtypes all match or test cases where
|
||||
# they don't!
|
||||
why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)"
|
||||
elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype:
|
||||
why_not_fast_path = (
|
||||
f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match"
|
||||
)
|
||||
elif self.in_proj_weight is not None and query.dtype != self.in_proj_weight.dtype:
|
||||
# this case will fail anyway, but at least they'll get a useful error message.
|
||||
why_not_fast_path = (
|
||||
f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match"
|
||||
)
|
||||
elif self.training:
|
||||
why_not_fast_path = "training is enabled"
|
||||
elif not self.batch_first:
|
||||
why_not_fast_path = "batch_first was not True"
|
||||
elif self.bias_k is not None:
|
||||
why_not_fast_path = "self.bias_k was not None"
|
||||
elif self.bias_v is not None:
|
||||
why_not_fast_path = "self.bias_v was not None"
|
||||
elif self.dropout:
|
||||
why_not_fast_path = f"dropout was {self.dropout}, required zero"
|
||||
elif self.add_zero_attn:
|
||||
why_not_fast_path = "add_zero_attn was enabled"
|
||||
elif not self._qkv_same_embed_dim:
|
||||
why_not_fast_path = "_qkv_same_embed_dim was not True"
|
||||
elif attn_mask is not None:
|
||||
why_not_fast_path = "attn_mask was not None"
|
||||
elif query.is_nested and key_padding_mask is not None:
|
||||
why_not_fast_path = "key_padding_mask is not supported with NestedTensor input"
|
||||
elif self.num_heads % 2 == 1:
|
||||
why_not_fast_path = "num_heads is odd"
|
||||
elif torch.is_autocast_enabled():
|
||||
why_not_fast_path = "autocast is enabled"
|
||||
|
||||
if not why_not_fast_path:
|
||||
tensor_args = (
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
)
|
||||
# We have to use list comprehensions below because TorchScript does not support
|
||||
# generator expressions.
|
||||
if torch.overrides.has_torch_function(tensor_args):
|
||||
why_not_fast_path = "some Tensor argument has_torch_function"
|
||||
elif not all([(x is None or x.is_cuda or "cpu" in str(x.device)) for x in tensor_args]):
|
||||
why_not_fast_path = "some Tensor argument is neither CUDA nor CPU"
|
||||
elif torch.is_grad_enabled() and any([x is not None and x.requires_grad for x in tensor_args]):
|
||||
why_not_fast_path = "grad is enabled and at least one of query or the input/output projection weights or biases requires_grad"
|
||||
if not why_not_fast_path:
|
||||
return torch._native_multi_head_attention(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
key_padding_mask if key_padding_mask is not None else attn_mask,
|
||||
need_weights,
|
||||
average_attn_weights,
|
||||
1 if key_padding_mask is not None else 0 if attn_mask is not None else None,
|
||||
)
|
||||
|
||||
any_nested = query.is_nested or key.is_nested or value.is_nested
|
||||
assert not any_nested, (
|
||||
"MultiheadAttention does not support NestedTensor outside of its fast path. "
|
||||
+ f"The fast path was not hit because {why_not_fast_path}"
|
||||
)
|
||||
|
||||
if self.batch_first and is_batched:
|
||||
# make sure that the transpose op does not affect the "is" property
|
||||
if key is value:
|
||||
if query is key:
|
||||
query = key = value = query.transpose(1, 0)
|
||||
else:
|
||||
query, key = [x.transpose(1, 0) for x in (query, key)]
|
||||
value = key
|
||||
else:
|
||||
query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
||||
|
||||
if not self._qkv_same_embed_dim:
|
||||
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
use_separate_proj_weight=True,
|
||||
q_proj_weight=self.q_proj_weight,
|
||||
k_proj_weight=self.k_proj_weight,
|
||||
v_proj_weight=self.v_proj_weight,
|
||||
average_attn_weights=average_attn_weights,
|
||||
cache=cache,
|
||||
)
|
||||
else:
|
||||
attn_output, attn_output_weights = F.multi_head_attention_forward(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
average_attn_weights=average_attn_weights,
|
||||
cache=cache,
|
||||
)
|
||||
if self.batch_first and is_batched:
|
||||
return attn_output.transpose(1, 0), attn_output_weights
|
||||
else:
|
||||
return attn_output, attn_output_weights
|
||||
188
only_tts/src/AR/modules/activation_onnx.py
Normal file
188
only_tts/src/AR/modules/activation_onnx.py
Normal file
@ -0,0 +1,188 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/activation.py
|
||||
from typing import Optional, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import Linear, Module
|
||||
from torch.nn.init import constant_, xavier_normal_, xavier_uniform_
|
||||
from torch.nn.modules.linear import NonDynamicallyQuantizableLinear
|
||||
from torch.nn.parameter import Parameter
|
||||
|
||||
from AR.modules.patched_mha_with_cache_onnx import multi_head_attention_forward_patched
|
||||
|
||||
|
||||
class MultiheadAttention(Module):
|
||||
__constants__ = ["batch_first"]
|
||||
bias_k: Optional[torch.Tensor]
|
||||
bias_v: Optional[torch.Tensor]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
embed_dim,
|
||||
num_heads,
|
||||
dropout=0.0,
|
||||
bias=True,
|
||||
add_bias_kv=False,
|
||||
add_zero_attn=False,
|
||||
kdim=None,
|
||||
vdim=None,
|
||||
batch_first=False,
|
||||
linear1_cls=Linear,
|
||||
linear2_cls=Linear,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(MultiheadAttention, self).__init__()
|
||||
self.embed_dim = embed_dim
|
||||
self.kdim = kdim if kdim is not None else embed_dim
|
||||
self.vdim = vdim if vdim is not None else embed_dim
|
||||
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
||||
|
||||
self.num_heads = num_heads
|
||||
self.dropout = dropout
|
||||
self.batch_first = batch_first
|
||||
self.head_dim = embed_dim // num_heads
|
||||
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
||||
|
||||
if add_bias_kv:
|
||||
self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
||||
else:
|
||||
self.bias_k = self.bias_v = None
|
||||
|
||||
if linear1_cls == Linear:
|
||||
if not self._qkv_same_embed_dim:
|
||||
self.q_proj_weight = Parameter(
|
||||
torch.empty(
|
||||
(embed_dim, embed_dim),
|
||||
**factory_kwargs,
|
||||
)
|
||||
)
|
||||
self.k_proj_weight = Parameter(
|
||||
torch.empty(
|
||||
(embed_dim, self.kdim),
|
||||
**factory_kwargs,
|
||||
)
|
||||
)
|
||||
self.v_proj_weight = Parameter(
|
||||
torch.empty(
|
||||
(embed_dim, self.vdim),
|
||||
**factory_kwargs,
|
||||
)
|
||||
)
|
||||
self.register_parameter("in_proj_weight", None)
|
||||
else:
|
||||
self.in_proj_weight = Parameter(
|
||||
torch.empty(
|
||||
(3 * embed_dim, embed_dim),
|
||||
**factory_kwargs,
|
||||
)
|
||||
)
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = Parameter(
|
||||
torch.empty(3 * embed_dim, **factory_kwargs),
|
||||
)
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
||||
|
||||
self._reset_parameters()
|
||||
else:
|
||||
if not self._qkv_same_embed_dim:
|
||||
raise NotImplementedError
|
||||
else:
|
||||
self.in_proj_linear = linear1_cls(
|
||||
embed_dim,
|
||||
3 * embed_dim,
|
||||
bias=bias,
|
||||
**factory_kwargs,
|
||||
)
|
||||
self.in_proj_weight = self.in_proj_linear.weight
|
||||
|
||||
self.register_parameter("q_proj_weight", None)
|
||||
self.register_parameter("k_proj_weight", None)
|
||||
self.register_parameter("v_proj_weight", None)
|
||||
|
||||
if bias:
|
||||
self.in_proj_bias = self.in_proj_linear.bias
|
||||
else:
|
||||
self.register_parameter("in_proj_bias", None)
|
||||
|
||||
self.out_proj = linear2_cls(
|
||||
embed_dim,
|
||||
embed_dim,
|
||||
bias=bias,
|
||||
**factory_kwargs,
|
||||
)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
self.add_zero_attn = add_zero_attn
|
||||
|
||||
def _reset_parameters(self):
|
||||
if self._qkv_same_embed_dim:
|
||||
xavier_uniform_(self.in_proj_weight)
|
||||
else:
|
||||
xavier_uniform_(self.q_proj_weight)
|
||||
xavier_uniform_(self.k_proj_weight)
|
||||
xavier_uniform_(self.v_proj_weight)
|
||||
|
||||
if self.in_proj_bias is not None:
|
||||
constant_(self.in_proj_bias, 0.0)
|
||||
constant_(self.out_proj.bias, 0.0)
|
||||
|
||||
if self.bias_k is not None:
|
||||
xavier_normal_(self.bias_k)
|
||||
if self.bias_v is not None:
|
||||
xavier_normal_(self.bias_v)
|
||||
|
||||
def __setstate__(self, state):
|
||||
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
||||
if "_qkv_same_embed_dim" not in state:
|
||||
state["_qkv_same_embed_dim"] = True
|
||||
|
||||
super(MultiheadAttention, self).__setstate__(state)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
query: Tensor,
|
||||
key: Tensor,
|
||||
value: Tensor,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
any_nested = query.is_nested or key.is_nested or value.is_nested
|
||||
query = key = value = query.transpose(1, 0)
|
||||
attn_output = multi_head_attention_forward_patched(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
self.embed_dim,
|
||||
self.num_heads,
|
||||
self.in_proj_weight,
|
||||
self.in_proj_bias,
|
||||
self.bias_k,
|
||||
self.bias_v,
|
||||
self.add_zero_attn,
|
||||
self.dropout,
|
||||
self.out_proj.weight,
|
||||
self.out_proj.bias,
|
||||
training=self.training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
average_attn_weights=average_attn_weights,
|
||||
cache=cache,
|
||||
)
|
||||
return attn_output.transpose(1, 0)
|
||||
78
only_tts/src/AR/modules/embedding.py
Normal file
78
only_tts/src/AR/modules/embedding.py
Normal file
@ -0,0 +1,78 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
vocab_size: int,
|
||||
dropout: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.embedding_dim = embedding_dim
|
||||
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
||||
|
||||
@property
|
||||
def weight(self) -> torch.Tensor:
|
||||
return self.word_embeddings.weight
|
||||
|
||||
def embedding(self, index: int) -> torch.Tensor:
|
||||
return self.word_embeddings.weight[index : index + 1]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.word_embeddings(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
class SinePositionalEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
dropout: float = 0.0,
|
||||
scale: bool = False,
|
||||
alpha: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
||||
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
|
||||
self.reverse = False
|
||||
self.pe = None
|
||||
self.extend_pe(torch.tensor(0.0).expand(1, 4000))
|
||||
|
||||
def extend_pe(self, x):
|
||||
"""Reset the positional encodings."""
|
||||
if self.pe is not None:
|
||||
if self.pe.size(1) >= x.size(1):
|
||||
if self.pe.dtype != x.dtype or self.pe.device != x.device:
|
||||
self.pe = self.pe.to(dtype=x.dtype, device=x.device)
|
||||
return
|
||||
pe = torch.zeros(x.size(1), self.embedding_dim)
|
||||
if self.reverse:
|
||||
position = torch.arange(x.size(1) - 1, -1, -1.0, dtype=torch.float32).unsqueeze(1)
|
||||
else:
|
||||
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1)
|
||||
div_term = torch.exp(
|
||||
torch.arange(0, self.embedding_dim, 2, dtype=torch.float32) * -(math.log(10000.0) / self.embedding_dim)
|
||||
)
|
||||
pe[:, 0::2] = torch.sin(position * div_term)
|
||||
pe[:, 1::2] = torch.cos(position * div_term)
|
||||
pe = pe.unsqueeze(0)
|
||||
self.pe = pe.to(device=x.device, dtype=x.dtype).detach()
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
self.extend_pe(x)
|
||||
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
||||
output = output * self.x_scale + self.alpha * self.pe[:, : x.size(1)]
|
||||
return self.dropout(output)
|
||||
63
only_tts/src/AR/modules/embedding_onnx.py
Normal file
63
only_tts/src/AR/modules/embedding_onnx.py
Normal file
@ -0,0 +1,63 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/embedding.py
|
||||
import math
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
|
||||
class TokenEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
vocab_size: int,
|
||||
dropout: float = 0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.vocab_size = vocab_size
|
||||
self.embedding_dim = embedding_dim
|
||||
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)
|
||||
|
||||
@property
|
||||
def weight(self) -> torch.Tensor:
|
||||
return self.word_embeddings.weight
|
||||
|
||||
def embedding(self, index: int) -> torch.Tensor:
|
||||
return self.word_embeddings.weight[index : index + 1]
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.word_embeddings(x)
|
||||
x = self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
class SinePositionalEmbedding(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
embedding_dim: int,
|
||||
dropout: float = 0.0,
|
||||
scale: bool = False,
|
||||
alpha: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
self.embedding_dim = embedding_dim
|
||||
self.x_scale = math.sqrt(embedding_dim) if scale else 1.0
|
||||
self.alpha = nn.Parameter(torch.ones(1), requires_grad=alpha)
|
||||
self.dropout = torch.nn.Dropout(p=dropout)
|
||||
self.reverse = False
|
||||
self.div_term = torch.exp(torch.arange(0, self.embedding_dim, 2) * -(math.log(10000.0) / self.embedding_dim))
|
||||
|
||||
def extend_pe(self, x):
|
||||
position = torch.cumsum(torch.ones_like(x[:, :, 0]), dim=1).transpose(0, 1)
|
||||
scpe = (position * self.div_term).unsqueeze(0)
|
||||
pe = torch.cat([torch.sin(scpe), torch.cos(scpe)]).permute(1, 2, 0)
|
||||
pe = pe.contiguous().view(1, -1, self.embedding_dim)
|
||||
return pe
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
pe = self.extend_pe(x)
|
||||
output = x.unsqueeze(-1) if x.ndim == 2 else x
|
||||
output = output * self.x_scale + self.alpha * pe
|
||||
return self.dropout(output)
|
||||
85
only_tts/src/AR/modules/lr_schedulers.py
Normal file
85
only_tts/src/AR/modules/lr_schedulers.py
Normal file
@ -0,0 +1,85 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/modules/lr_schedulers.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import math
|
||||
|
||||
import torch
|
||||
from matplotlib import pyplot as plt
|
||||
from torch import nn
|
||||
from torch.optim import Adam
|
||||
|
||||
|
||||
class WarmupCosineLRSchedule(torch.optim.lr_scheduler._LRScheduler):
|
||||
"""
|
||||
Implements Warmup learning rate schedule until 'warmup_steps', going from 'init_lr' to 'peak_lr' for multiple optimizers.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
optimizer,
|
||||
init_lr,
|
||||
peak_lr,
|
||||
end_lr,
|
||||
warmup_steps=10000,
|
||||
total_steps=400000,
|
||||
current_step=0,
|
||||
):
|
||||
self.init_lr = init_lr
|
||||
self.peak_lr = peak_lr
|
||||
self.end_lr = end_lr
|
||||
self.optimizer = optimizer
|
||||
self._warmup_rate = (peak_lr - init_lr) / warmup_steps
|
||||
self._decay_rate = (end_lr - peak_lr) / (total_steps - warmup_steps)
|
||||
self._current_step = current_step
|
||||
self.lr = init_lr
|
||||
self.warmup_steps = warmup_steps
|
||||
self.total_steps = total_steps
|
||||
self._last_lr = [self.lr]
|
||||
|
||||
def set_lr(self, lr):
|
||||
self._last_lr = [g["lr"] for g in self.optimizer.param_groups]
|
||||
for g in self.optimizer.param_groups:
|
||||
# g['lr'] = lr
|
||||
g["lr"] = self.end_lr ###锁定用线性
|
||||
|
||||
def step(self):
|
||||
if self._current_step < self.warmup_steps:
|
||||
lr = self.init_lr + self._warmup_rate * self._current_step
|
||||
|
||||
elif self._current_step > self.total_steps:
|
||||
lr = self.end_lr
|
||||
|
||||
else:
|
||||
decay_ratio = (self._current_step - self.warmup_steps) / (self.total_steps - self.warmup_steps)
|
||||
if decay_ratio < 0.0 or decay_ratio > 1.0:
|
||||
raise RuntimeError("Decay ratio must be in [0.0, 1.0]. Fix LR scheduler settings.")
|
||||
coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio))
|
||||
lr = self.end_lr + coeff * (self.peak_lr - self.end_lr)
|
||||
|
||||
self.lr = lr = self.end_lr = 0.002 ###锁定用线性###不听话,直接锁定!
|
||||
self.set_lr(lr)
|
||||
self.lr = lr
|
||||
self._current_step += 1
|
||||
return self.lr
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
m = nn.Linear(10, 10)
|
||||
opt = Adam(m.parameters(), lr=1e-4)
|
||||
s = WarmupCosineLRSchedule(
|
||||
opt,
|
||||
1e-6,
|
||||
2e-4,
|
||||
1e-6,
|
||||
warmup_steps=2000,
|
||||
total_steps=20000,
|
||||
current_step=0,
|
||||
)
|
||||
lrs = []
|
||||
for i in range(25000):
|
||||
s.step()
|
||||
lrs.append(s.lr)
|
||||
print(s.lr)
|
||||
|
||||
plt.plot(lrs)
|
||||
plt.plot(range(0, 25000), lrs)
|
||||
plt.show()
|
||||
593
only_tts/src/AR/modules/optim.py
Normal file
593
only_tts/src/AR/modules/optim.py
Normal file
@ -0,0 +1,593 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||
#
|
||||
# See ../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import contextlib
|
||||
import logging
|
||||
from collections import defaultdict
|
||||
from typing import List, Tuple
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.optim import Optimizer
|
||||
|
||||
|
||||
class BatchedOptimizer(Optimizer):
|
||||
"""
|
||||
This class adds to class Optimizer the capability to optimize parameters in batches:
|
||||
it will stack the parameters and their grads for you so the optimizer can work
|
||||
on tensors with an extra leading dimension. This is intended for speed with GPUs,
|
||||
as it reduces the number of kernels launched in the optimizer.
|
||||
|
||||
Args:
|
||||
params:
|
||||
"""
|
||||
|
||||
def __init__(self, params, defaults):
|
||||
super(BatchedOptimizer, self).__init__(params, defaults)
|
||||
|
||||
@contextlib.contextmanager
|
||||
def batched_params(self, param_group, group_params_names):
|
||||
"""
|
||||
This function returns (technically, yields) a list of
|
||||
of tuples (p, state), where
|
||||
p is a `fake` parameter that is stacked (over axis 0) from real parameters
|
||||
that share the same shape, and its gradient is also stacked;
|
||||
`state` is the state corresponding to this batch of parameters
|
||||
(it will be physically located in the "state" for one of the real
|
||||
parameters, the last one that has any particular shape and dtype).
|
||||
|
||||
This function is decorated as a context manager so that it can
|
||||
write parameters back to their "real" locations.
|
||||
|
||||
The idea is, instead of doing:
|
||||
<code>
|
||||
for p in group["params"]:
|
||||
state = self.state[p]
|
||||
...
|
||||
</code>
|
||||
you can do:
|
||||
<code>
|
||||
with self.batched_params(group["params"]) as batches:
|
||||
for p, state, p_names in batches:
|
||||
...
|
||||
</code>
|
||||
|
||||
Args:
|
||||
group: a parameter group, which is a list of parameters; should be
|
||||
one of self.param_groups.
|
||||
group_params_names: name for each parameter in group,
|
||||
which is List[str].
|
||||
"""
|
||||
batches = defaultdict(list) # `batches` maps from tuple (dtype_as_str,*shape) to list of nn.Parameter
|
||||
batches_names = defaultdict(list) # `batches` maps from tuple (dtype_as_str,*shape) to list of str
|
||||
|
||||
assert len(param_group) == len(group_params_names)
|
||||
for p, named_p in zip(param_group, group_params_names):
|
||||
key = (str(p.dtype), *p.shape)
|
||||
batches[key].append(p)
|
||||
batches_names[key].append(named_p)
|
||||
|
||||
batches_names_keys = list(batches_names.keys())
|
||||
sorted_idx = sorted(range(len(batches_names)), key=lambda i: batches_names_keys[i])
|
||||
batches_names = [batches_names[batches_names_keys[idx]] for idx in sorted_idx]
|
||||
batches = [batches[batches_names_keys[idx]] for idx in sorted_idx]
|
||||
|
||||
stacked_params_dict = dict()
|
||||
|
||||
# turn batches into a list, in deterministic order.
|
||||
# tuples will contain tuples of (stacked_param, state, stacked_params_names),
|
||||
# one for each batch in `batches`.
|
||||
tuples = []
|
||||
|
||||
for batch, batch_names in zip(batches, batches_names):
|
||||
p = batch[0]
|
||||
# we arbitrarily store the state in the
|
||||
# state corresponding to the 1st parameter in the
|
||||
# group. class Optimizer will take care of saving/loading state.
|
||||
state = self.state[p]
|
||||
p_stacked = torch.stack(batch)
|
||||
grad = torch.stack([torch.zeros_like(p) if p.grad is None else p.grad for p in batch])
|
||||
p_stacked.grad = grad
|
||||
stacked_params_dict[key] = p_stacked
|
||||
tuples.append((p_stacked, state, batch_names))
|
||||
|
||||
yield tuples # <-- calling code will do the actual optimization here!
|
||||
|
||||
for (stacked_params, _state, _names), batch in zip(tuples, batches):
|
||||
for i, p in enumerate(batch): # batch is list of Parameter
|
||||
p.copy_(stacked_params[i])
|
||||
|
||||
|
||||
class ScaledAdam(BatchedOptimizer):
|
||||
"""
|
||||
Implements 'Scaled Adam', a variant of Adam where we scale each parameter's update
|
||||
proportional to the norm of that parameter; and also learn the scale of the parameter,
|
||||
in log space, subject to upper and lower limits (as if we had factored each parameter as
|
||||
param = underlying_param * log_scale.exp())
|
||||
|
||||
|
||||
Args:
|
||||
params: The parameters or param_groups to optimize (like other Optimizer subclasses)
|
||||
lr: The learning rate. We will typically use a learning rate schedule that starts
|
||||
at 0.03 and decreases over time, i.e. much higher than other common
|
||||
optimizers.
|
||||
clipping_scale: (e.g. 2.0)
|
||||
A scale for gradient-clipping: if specified, the normalized gradients
|
||||
over the whole model will be clipped to have 2-norm equal to
|
||||
`clipping_scale` times the median 2-norm over the most recent period
|
||||
of `clipping_update_period` minibatches. By "normalized gradients",
|
||||
we mean after multiplying by the rms parameter value for this tensor
|
||||
[for non-scalars]; this is appropriate because our update is scaled
|
||||
by this quantity.
|
||||
betas: beta1,beta2 are momentum constants for regular momentum, and moving sum-sq grad.
|
||||
Must satisfy 0 < beta <= beta2 < 1.
|
||||
scalar_lr_scale: A scaling factor on the learning rate, that we use to update the
|
||||
scale of each parameter tensor and scalar parameters of the mode..
|
||||
If each parameter were decomposed
|
||||
as p * p_scale.exp(), where (p**2).mean().sqrt() == 1.0, scalar_lr_scale
|
||||
would be a the scaling factor on the learning rate of p_scale.
|
||||
eps: A general-purpose epsilon to prevent division by zero
|
||||
param_min_rms: Minimum root-mean-square value of parameter tensor, for purposes of
|
||||
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
||||
parameter tensor to be >= this value)
|
||||
param_max_rms: Maximum root-mean-square value of parameter tensor, for purposes of
|
||||
learning the scale on the parameters (we'll constrain the rms of each non-scalar
|
||||
parameter tensor to be <= this value)
|
||||
scalar_max: Maximum absolute value for scalar parameters (applicable if your
|
||||
model has any parameters with numel() == 1).
|
||||
size_update_period: The periodicity, in steps, with which we update the size (scale)
|
||||
of the parameter tensor. This is provided to save a little time
|
||||
in the update.
|
||||
clipping_update_period: if clipping_scale is specified, this is the period
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
params,
|
||||
lr=3e-02,
|
||||
clipping_scale=None,
|
||||
betas=(0.9, 0.98),
|
||||
scalar_lr_scale=0.1,
|
||||
eps=1.0e-08,
|
||||
param_min_rms=1.0e-05,
|
||||
param_max_rms=3.0,
|
||||
scalar_max=10.0,
|
||||
size_update_period=4,
|
||||
clipping_update_period=100,
|
||||
parameters_names=None,
|
||||
show_dominant_parameters=True,
|
||||
):
|
||||
assert parameters_names is not None, (
|
||||
"Please prepare parameters_names,which is a List[List[str]]. Each List[str] is for a groupand each str is for a parameter"
|
||||
)
|
||||
defaults = dict(
|
||||
lr=lr,
|
||||
clipping_scale=clipping_scale,
|
||||
betas=betas,
|
||||
scalar_lr_scale=scalar_lr_scale,
|
||||
eps=eps,
|
||||
param_min_rms=param_min_rms,
|
||||
param_max_rms=param_max_rms,
|
||||
scalar_max=scalar_max,
|
||||
size_update_period=size_update_period,
|
||||
clipping_update_period=clipping_update_period,
|
||||
)
|
||||
|
||||
super(ScaledAdam, self).__init__(params, defaults)
|
||||
assert len(self.param_groups) == len(parameters_names)
|
||||
self.parameters_names = parameters_names
|
||||
self.show_dominant_parameters = show_dominant_parameters
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(ScaledAdam, self).__setstate__(state)
|
||||
|
||||
@torch.no_grad()
|
||||
def step(self, closure=None):
|
||||
"""Performs a single optimization step.
|
||||
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
with torch.enable_grad():
|
||||
loss = closure()
|
||||
|
||||
batch = True
|
||||
|
||||
for group, group_params_names in zip(self.param_groups, self.parameters_names):
|
||||
with self.batched_params(group["params"], group_params_names) as batches:
|
||||
# batches is list of pairs (stacked_param, state). stacked_param is like
|
||||
# a regular parameter, and will have a .grad, but the 1st dim corresponds to
|
||||
# a stacking dim, it is not a real dim.
|
||||
|
||||
if len(batches[0][1]) == 0: # if len(first state) == 0: not yet initialized
|
||||
clipping_scale = 1
|
||||
else:
|
||||
clipping_scale = self._get_clipping_scale(group, batches)
|
||||
|
||||
for p, state, _ in batches:
|
||||
# Perform optimization step.
|
||||
# grad is not going to be None, we handled that when creating the batches.
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError("ScaledAdam optimizer does not support sparse gradients")
|
||||
# State initialization
|
||||
if len(state) == 0:
|
||||
self._init_state(group, p, state)
|
||||
|
||||
self._step_one_batch(group, p, state, clipping_scale)
|
||||
|
||||
return loss
|
||||
|
||||
def _init_state(self, group: dict, p: Tensor, state: dict):
|
||||
"""
|
||||
Initializes state dict for parameter 'p'. Assumes that dim 0 of tensor p
|
||||
is actually the batch dimension, corresponding to batched-together
|
||||
parameters of a given shape.
|
||||
|
||||
|
||||
Args:
|
||||
group: Dict to look up configuration values.
|
||||
p: The parameter that we are initializing the state for
|
||||
state: Dict from string to whatever state we are initializing
|
||||
"""
|
||||
size_update_period = group["size_update_period"]
|
||||
|
||||
state["step"] = 0
|
||||
|
||||
kwargs = {"device": p.device, "dtype": p.dtype}
|
||||
|
||||
# 'delta' implements conventional momentum. There are
|
||||
# several different kinds of update going on, so rather than
|
||||
# compute "exp_avg" like in Adam, we store and decay a
|
||||
# parameter-change "delta", which combines all forms of
|
||||
# update. this is equivalent to how it's done in Adam,
|
||||
# except for the first few steps.
|
||||
state["delta"] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
batch_size = p.shape[0]
|
||||
numel = p.numel() // batch_size
|
||||
numel = p.numel()
|
||||
|
||||
if numel > 1:
|
||||
# "param_rms" just periodically records the scalar root-mean-square value of
|
||||
# the parameter tensor.
|
||||
# it has a shape like (batch_size, 1, 1, 1, 1)
|
||||
param_rms = (p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt()
|
||||
state["param_rms"] = param_rms
|
||||
|
||||
state["scale_exp_avg_sq"] = torch.zeros_like(param_rms)
|
||||
state["scale_grads"] = torch.zeros(size_update_period, *param_rms.shape, **kwargs)
|
||||
|
||||
# exp_avg_sq is the weighted sum of scaled gradients. as in Adam.
|
||||
state["exp_avg_sq"] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||
|
||||
def _get_clipping_scale(self, group: dict, tuples: List[Tuple[Tensor, dict, List[str]]]) -> float:
|
||||
"""
|
||||
Returns a scalar factor <= 1.0 that dictates gradient clipping, i.e. we will scale the gradients
|
||||
by this amount before applying the rest of the update.
|
||||
|
||||
Args:
|
||||
group: the parameter group, an item in self.param_groups
|
||||
tuples: a list of tuples of (param, state, param_names)
|
||||
where param is a batched set of parameters,
|
||||
with a .grad (1st dim is batch dim)
|
||||
and state is the state-dict where optimization parameters are kept.
|
||||
param_names is a List[str] while each str is name for a parameter
|
||||
in batched set of parameters "param".
|
||||
"""
|
||||
assert len(tuples) >= 1
|
||||
clipping_scale = group["clipping_scale"]
|
||||
(first_p, first_state, _) = tuples[0]
|
||||
step = first_state["step"]
|
||||
if clipping_scale is None or step == 0:
|
||||
# no clipping. return early on step == 0 because the other
|
||||
# parameters' state won't have been initialized yet.
|
||||
return 1.0
|
||||
clipping_update_period = group["clipping_update_period"]
|
||||
|
||||
tot_sumsq = torch.tensor(0.0, device=first_p.device)
|
||||
for p, state, param_names in tuples:
|
||||
grad = p.grad
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError("ScaledAdam optimizer does not support sparse gradients")
|
||||
if p.numel() == p.shape[0]: # a batch of scalars
|
||||
tot_sumsq += (grad**2).sum() # sum() to change shape [1] to []
|
||||
else:
|
||||
tot_sumsq += ((grad * state["param_rms"]) ** 2).sum()
|
||||
|
||||
tot_norm = tot_sumsq.sqrt()
|
||||
if "model_norms" not in first_state:
|
||||
first_state["model_norms"] = torch.zeros(clipping_update_period, device=p.device)
|
||||
first_state["model_norms"][step % clipping_update_period] = tot_norm
|
||||
|
||||
if step % clipping_update_period == 0:
|
||||
# Print some stats.
|
||||
# We don't reach here if step == 0 because we would have returned
|
||||
# above.
|
||||
sorted_norms = first_state["model_norms"].sort()[0].to("cpu")
|
||||
quartiles = []
|
||||
for n in range(0, 5):
|
||||
index = min(
|
||||
clipping_update_period - 1,
|
||||
(clipping_update_period // 4) * n,
|
||||
)
|
||||
quartiles.append(sorted_norms[index].item())
|
||||
|
||||
median = quartiles[2]
|
||||
threshold = clipping_scale * median
|
||||
first_state["model_norm_threshold"] = threshold
|
||||
percent_clipped = (
|
||||
first_state["num_clipped"] * 100.0 / clipping_update_period if "num_clipped" in first_state else 0.0
|
||||
)
|
||||
first_state["num_clipped"] = 0
|
||||
quartiles = " ".join(["%.3e" % x for x in quartiles])
|
||||
logging.info(
|
||||
f"Clipping_scale={clipping_scale}, grad-norm quartiles {quartiles}, threshold={threshold:.3e}, percent-clipped={percent_clipped:.1f}"
|
||||
)
|
||||
|
||||
if step < clipping_update_period:
|
||||
return 1.0 # We have not yet estimated a norm to clip to.
|
||||
else:
|
||||
try:
|
||||
model_norm_threshold = first_state["model_norm_threshold"]
|
||||
except KeyError:
|
||||
logging.info(
|
||||
"Warning: model_norm_threshold not in state: possibly you changed config when restarting, adding clipping_scale option?"
|
||||
)
|
||||
return 1.0
|
||||
ans = min(1.0, (model_norm_threshold / (tot_norm + 1.0e-20)).item())
|
||||
if ans < 1.0:
|
||||
first_state["num_clipped"] += 1
|
||||
if ans < 0.1:
|
||||
logging.warning(f"Scaling gradients by {ans}, model_norm_threshold={model_norm_threshold}")
|
||||
if self.show_dominant_parameters:
|
||||
assert p.shape[0] == len(param_names)
|
||||
self._show_gradient_dominating_parameter(tuples, tot_sumsq)
|
||||
return ans
|
||||
|
||||
def _show_gradient_dominating_parameter(self, tuples: List[Tuple[Tensor, dict, List[str]]], tot_sumsq: Tensor):
|
||||
"""
|
||||
Show information of parameter which dominating tot_sumsq.
|
||||
|
||||
Args:
|
||||
tuples: a list of tuples of (param, state, param_names)
|
||||
where param is a batched set of parameters,
|
||||
with a .grad (1st dim is batch dim)
|
||||
and state is the state-dict where optimization parameters are kept.
|
||||
param_names is a List[str] while each str is name for a parameter
|
||||
in batched set of parameters "param".
|
||||
tot_sumsq: sumsq of all parameters. Though it's could be calculated
|
||||
from tuples, we still pass it to save some time.
|
||||
"""
|
||||
all_sumsq_orig = {}
|
||||
for p, state, batch_param_names in tuples:
|
||||
# p is a stacked batch parameters.
|
||||
batch_grad = p.grad
|
||||
if p.numel() == p.shape[0]: # a batch of scalars
|
||||
batch_sumsq_orig = batch_grad**2
|
||||
# Dummpy values used by following `zip` statement.
|
||||
batch_rms_orig = torch.ones(p.shape[0])
|
||||
else:
|
||||
batch_rms_orig = state["param_rms"]
|
||||
batch_sumsq_orig = ((batch_grad * batch_rms_orig) ** 2).sum(dim=list(range(1, batch_grad.ndim)))
|
||||
|
||||
for name, sumsq_orig, rms, grad in zip(
|
||||
batch_param_names,
|
||||
batch_sumsq_orig,
|
||||
batch_rms_orig,
|
||||
batch_grad,
|
||||
):
|
||||
proportion_orig = sumsq_orig / tot_sumsq
|
||||
all_sumsq_orig[name] = (proportion_orig, sumsq_orig, rms, grad)
|
||||
|
||||
assert torch.isclose(
|
||||
sum([value[0] for value in all_sumsq_orig.values()]).cpu(),
|
||||
torch.tensor(1.0),
|
||||
)
|
||||
sorted_by_proportion = {
|
||||
k: v
|
||||
for k, v in sorted(
|
||||
all_sumsq_orig.items(),
|
||||
key=lambda item: item[1][0],
|
||||
reverse=True,
|
||||
)
|
||||
}
|
||||
dominant_param_name = next(iter(sorted_by_proportion))
|
||||
(
|
||||
dominant_proportion,
|
||||
dominant_sumsq,
|
||||
dominant_rms,
|
||||
dominant_grad,
|
||||
) = sorted_by_proportion[dominant_param_name]
|
||||
logging.info(
|
||||
f"Parameter Dominating tot_sumsq {dominant_param_name}"
|
||||
f" with proportion {dominant_proportion:.2f},"
|
||||
f" where dominant_sumsq=(grad_sumsq*orig_rms_sq)"
|
||||
f"={dominant_sumsq:.3e},"
|
||||
f" grad_sumsq = {(dominant_grad**2).sum():.3e},"
|
||||
f" orig_rms_sq={(dominant_rms**2).item():.3e}"
|
||||
)
|
||||
|
||||
def _step_one_batch(self, group: dict, p: Tensor, state: dict, clipping_scale: float):
|
||||
"""
|
||||
Do the step for one parameter, which is actually going to be a batch of
|
||||
`real` parameters, with dim 0 as the batch dim.
|
||||
Args:
|
||||
group: dict to look up configuration values
|
||||
p: parameter to update (actually multiple parameters stacked together
|
||||
as a batch)
|
||||
state: state-dict for p, to look up the optimizer state
|
||||
"""
|
||||
lr = group["lr"]
|
||||
size_update_period = group["size_update_period"]
|
||||
beta1 = group["betas"][0]
|
||||
|
||||
grad = p.grad
|
||||
if clipping_scale != 1.0:
|
||||
grad = grad * clipping_scale
|
||||
step = state["step"]
|
||||
delta = state["delta"]
|
||||
|
||||
delta.mul_(beta1)
|
||||
batch_size = p.shape[0]
|
||||
numel = p.numel() // batch_size
|
||||
if numel > 1:
|
||||
# Update the size/scale of p, and set param_rms
|
||||
scale_grads = state["scale_grads"]
|
||||
scale_grads[step % size_update_period] = (p * grad).sum(dim=list(range(1, p.ndim)), keepdim=True)
|
||||
if step % size_update_period == size_update_period - 1:
|
||||
param_rms = state["param_rms"] # shape: (batch_size, 1, 1, ..)
|
||||
param_rms.copy_((p**2).mean(dim=list(range(1, p.ndim)), keepdim=True).sqrt())
|
||||
if step > 0:
|
||||
# self._size_update() learns the overall scale on the
|
||||
# parameter, by shrinking or expanding it.
|
||||
self._size_update(group, scale_grads, p, state)
|
||||
|
||||
if numel == 1:
|
||||
# For parameters with 1 element we just use regular Adam.
|
||||
# Updates delta.
|
||||
self._step_scalar(group, p, state)
|
||||
else:
|
||||
self._step(group, p, state)
|
||||
|
||||
state["step"] = step + 1
|
||||
|
||||
def _size_update(
|
||||
self,
|
||||
group: dict,
|
||||
scale_grads: Tensor,
|
||||
p: Tensor,
|
||||
state: dict,
|
||||
) -> None:
|
||||
"""
|
||||
Called only where p.numel() > 1, this updates the scale of the parameter.
|
||||
If we imagine: p = underlying_param * scale.exp(), and we are doing
|
||||
gradient descent on underlying param and on scale, this function does the update
|
||||
on `scale`.
|
||||
|
||||
Args:
|
||||
group: dict to look up configuration values
|
||||
scale_grads: a tensor of shape (size_update_period, batch_size, 1, 1,...) containing
|
||||
grads w.r.t. the scales.
|
||||
p: The parameter to update
|
||||
state: The state-dict of p
|
||||
"""
|
||||
|
||||
param_rms = state["param_rms"]
|
||||
beta1, beta2 = group["betas"]
|
||||
size_lr = group["lr"] * group["scalar_lr_scale"]
|
||||
param_min_rms = group["param_min_rms"]
|
||||
param_max_rms = group["param_max_rms"]
|
||||
eps = group["eps"]
|
||||
step = state["step"]
|
||||
batch_size = p.shape[0]
|
||||
|
||||
size_update_period = scale_grads.shape[0]
|
||||
# correct beta2 for the size update period: we will have
|
||||
# faster decay at this level.
|
||||
beta2_corr = beta2**size_update_period
|
||||
|
||||
scale_exp_avg_sq = state["scale_exp_avg_sq"] # shape: (batch_size, 1, 1, ..)
|
||||
scale_exp_avg_sq.mul_(beta2_corr).add_(
|
||||
(scale_grads**2).mean(dim=0), # mean over dim `size_update_period`
|
||||
alpha=1 - beta2_corr,
|
||||
) # shape is (batch_size, 1, 1, ...)
|
||||
|
||||
# The 1st time we reach here is when size_step == 1.
|
||||
size_step = (step + 1) // size_update_period
|
||||
bias_correction2 = 1 - beta2_corr**size_step
|
||||
# we don't bother with bias_correction1; this will help prevent divergence
|
||||
# at the start of training.
|
||||
|
||||
denom = scale_exp_avg_sq.sqrt() + eps
|
||||
|
||||
scale_step = -size_lr * (bias_correction2**0.5) * scale_grads.sum(dim=0) / denom
|
||||
|
||||
is_too_small = param_rms < param_min_rms
|
||||
is_too_large = param_rms > param_max_rms
|
||||
|
||||
# when the param gets too small, just don't shrink it any further.
|
||||
scale_step.masked_fill_(is_too_small, 0.0)
|
||||
# when it gets too large, stop it from getting any larger.
|
||||
scale_step.masked_fill_(is_too_large, -size_lr * size_update_period)
|
||||
delta = state["delta"]
|
||||
# the factor of (1-beta1) relates to momentum.
|
||||
delta.add_(p * scale_step, alpha=(1 - beta1))
|
||||
|
||||
def _step(self, group: dict, p: Tensor, state: dict):
|
||||
"""
|
||||
This function does the core update of self.step(), in the case where the members of
|
||||
the batch have more than 1 element.
|
||||
|
||||
Args:
|
||||
group: A dict which will be used to look up configuration values
|
||||
p: The parameter to be updated
|
||||
grad: The grad of p
|
||||
state: The state-dict corresponding to parameter p
|
||||
|
||||
This function modifies p.
|
||||
"""
|
||||
grad = p.grad
|
||||
lr = group["lr"]
|
||||
beta1, beta2 = group["betas"]
|
||||
eps = group["eps"]
|
||||
param_min_rms = group["param_min_rms"]
|
||||
step = state["step"]
|
||||
|
||||
exp_avg_sq = state["exp_avg_sq"]
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=(1 - beta2))
|
||||
|
||||
this_step = state["step"] - (state["zero_step"] if "zero_step" in state else 0)
|
||||
bias_correction2 = 1 - beta2 ** (this_step + 1)
|
||||
if bias_correction2 < 0.99:
|
||||
# note: not in-place.
|
||||
exp_avg_sq = exp_avg_sq * (1.0 / bias_correction2)
|
||||
|
||||
denom = exp_avg_sq.sqrt()
|
||||
denom += eps
|
||||
grad = grad / denom
|
||||
|
||||
alpha = -lr * (1 - beta1) * state["param_rms"].clamp(min=param_min_rms)
|
||||
|
||||
delta = state["delta"]
|
||||
delta.add_(grad * alpha)
|
||||
p.add_(delta)
|
||||
|
||||
def _step_scalar(self, group: dict, p: Tensor, state: dict):
|
||||
"""
|
||||
A simplified form of the core update for scalar tensors, where we cannot get a good
|
||||
estimate of the parameter rms.
|
||||
"""
|
||||
beta1, beta2 = group["betas"]
|
||||
scalar_max = group["scalar_max"]
|
||||
eps = group["eps"]
|
||||
lr = group["lr"] * group["scalar_lr_scale"]
|
||||
grad = p.grad
|
||||
|
||||
exp_avg_sq = state["exp_avg_sq"] # shape: (batch_size,)
|
||||
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1 - beta2)
|
||||
|
||||
# bias_correction2 is like in Adam. Don't bother with bias_correction1;
|
||||
# slower update at the start will help stability anyway.
|
||||
bias_correction2 = 1 - beta2 ** (state["step"] + 1)
|
||||
denom = (exp_avg_sq / bias_correction2).sqrt() + eps
|
||||
|
||||
delta = state["delta"]
|
||||
delta.add_(grad / denom, alpha=-lr * (1 - beta1))
|
||||
p.clamp_(min=-scalar_max, max=scalar_max)
|
||||
p.add_(delta)
|
||||
428
only_tts/src/AR/modules/patched_mha_with_cache.py
Normal file
428
only_tts/src/AR/modules/patched_mha_with_cache.py
Normal file
@ -0,0 +1,428 @@
|
||||
from torch.nn.functional import *
|
||||
from torch.nn.functional import (
|
||||
_mha_shape_check,
|
||||
_canonical_mask,
|
||||
_none_or_dtype,
|
||||
_in_projection_packed,
|
||||
)
|
||||
import torch
|
||||
# Tensor = torch.Tensor
|
||||
# from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
|
||||
def multi_head_attention_forward_patched(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
embed_dim_to_check,
|
||||
num_heads,
|
||||
in_proj_weight,
|
||||
in_proj_bias,
|
||||
bias_k,
|
||||
bias_v,
|
||||
add_zero_attn,
|
||||
dropout_p: float,
|
||||
out_proj_weight,
|
||||
out_proj_bias,
|
||||
training=True,
|
||||
key_padding_mask=None,
|
||||
need_weights=True,
|
||||
attn_mask=None,
|
||||
use_separate_proj_weight=False,
|
||||
q_proj_weight=None,
|
||||
k_proj_weight=None,
|
||||
v_proj_weight=None,
|
||||
static_k=None,
|
||||
static_v=None,
|
||||
average_attn_weights=True,
|
||||
is_causal=False,
|
||||
cache=None,
|
||||
):
|
||||
r"""
|
||||
Args:
|
||||
query, key, value: map a query and a set of key-value pairs to an output.
|
||||
See "Attention Is All You Need" for more details.
|
||||
embed_dim_to_check: total dimension of the model.
|
||||
num_heads: parallel attention heads.
|
||||
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
||||
add_zero_attn: add a new batch of zeros to the key and
|
||||
value sequences at dim=1.
|
||||
dropout_p: probability of an element to be zeroed.
|
||||
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||||
training: apply dropout if is ``True``.
|
||||
key_padding_mask: if provided, specified padding elements in the key will
|
||||
be ignored by the attention. This is an binary mask. When the value is True,
|
||||
the corresponding value on the attention layer will be filled with -inf.
|
||||
need_weights: output attn_output_weights.
|
||||
Default: `True`
|
||||
Note: `needs_weight` defaults to `True`, but should be set to `False`
|
||||
For best performance when attention weights are not nedeeded.
|
||||
*Setting needs_weights to `True`
|
||||
leads to a significant performance degradation.*
|
||||
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||||
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||||
is_causal: If specified, applies a causal mask as attention mask, and ignores
|
||||
attn_mask for computing scaled dot product attention.
|
||||
Default: ``False``.
|
||||
.. warning::
|
||||
is_causal is provides a hint that the attn_mask is the
|
||||
causal mask.Providing incorrect hints can result in
|
||||
incorrect execution, including forward and backward
|
||||
compatibility.
|
||||
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
||||
and value in different forms. If false, in_proj_weight will be used, which is
|
||||
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
||||
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
||||
static_k, static_v: static key and value used for attention operators.
|
||||
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
|
||||
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
|
||||
when ``need_weights=True.``. Default: True
|
||||
|
||||
|
||||
Shape:
|
||||
Inputs:
|
||||
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||||
the embedding dimension.
|
||||
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||||
If a FloatTensor is provided, it will be directly added to the value.
|
||||
If a BoolTensor is provided, the positions with the
|
||||
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||||
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||||
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||||
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||||
positions. If a BoolTensor is provided, positions with ``True``
|
||||
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||||
is provided, it will be added to the attention weight.
|
||||
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
||||
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
||||
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
||||
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
||||
|
||||
Outputs:
|
||||
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||||
E is the embedding dimension.
|
||||
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
|
||||
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
||||
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
||||
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||||
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
||||
"""
|
||||
tens_ops = (
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
in_proj_weight,
|
||||
in_proj_bias,
|
||||
bias_k,
|
||||
bias_v,
|
||||
out_proj_weight,
|
||||
out_proj_bias,
|
||||
)
|
||||
if has_torch_function(tens_ops):
|
||||
return handle_torch_function(
|
||||
multi_head_attention_forward,
|
||||
tens_ops,
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
embed_dim_to_check,
|
||||
num_heads,
|
||||
in_proj_weight,
|
||||
in_proj_bias,
|
||||
bias_k,
|
||||
bias_v,
|
||||
add_zero_attn,
|
||||
dropout_p,
|
||||
out_proj_weight,
|
||||
out_proj_bias,
|
||||
training=training,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=need_weights,
|
||||
attn_mask=attn_mask,
|
||||
is_causal=is_causal,
|
||||
use_separate_proj_weight=use_separate_proj_weight,
|
||||
q_proj_weight=q_proj_weight,
|
||||
k_proj_weight=k_proj_weight,
|
||||
v_proj_weight=v_proj_weight,
|
||||
static_k=static_k,
|
||||
static_v=static_v,
|
||||
average_attn_weights=average_attn_weights,
|
||||
cache=cache,
|
||||
)
|
||||
|
||||
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
||||
|
||||
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
||||
# is batched, run the computation and before returning squeeze the
|
||||
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
||||
if not is_batched:
|
||||
# unsqueeze if the input is unbatched
|
||||
query = query.unsqueeze(1)
|
||||
key = key.unsqueeze(1)
|
||||
value = value.unsqueeze(1)
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = key_padding_mask.unsqueeze(0)
|
||||
|
||||
# set up shape vars
|
||||
tgt_len, bsz, embed_dim = query.shape
|
||||
src_len, _, _ = key.shape
|
||||
|
||||
key_padding_mask = _canonical_mask(
|
||||
mask=key_padding_mask,
|
||||
mask_name="key_padding_mask",
|
||||
other_type=_none_or_dtype(attn_mask),
|
||||
other_name="attn_mask",
|
||||
target_type=query.dtype,
|
||||
)
|
||||
|
||||
if is_causal and attn_mask is None:
|
||||
raise RuntimeError(
|
||||
"Need attn_mask if specifying the is_causal hint. "
|
||||
"You may use the Transformer module method "
|
||||
"`generate_square_subsequent_mask` to create this mask."
|
||||
)
|
||||
|
||||
if is_causal and key_padding_mask is None and not need_weights:
|
||||
# when we have a kpm or need weights, we need attn_mask
|
||||
# Otherwise, we use the is_causal hint go as is_causal
|
||||
# indicator to SDPA.
|
||||
attn_mask = None
|
||||
else:
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=query.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
|
||||
if key_padding_mask is not None:
|
||||
# We have the attn_mask, and use that to merge kpm into it.
|
||||
# Turn off use of is_causal hint, as the merged mask is no
|
||||
# longer causal.
|
||||
is_causal = False
|
||||
|
||||
assert embed_dim == embed_dim_to_check, (
|
||||
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
||||
)
|
||||
if isinstance(embed_dim, torch.Tensor):
|
||||
# embed_dim can be a tensor when JIT tracing
|
||||
head_dim = embed_dim.div(num_heads, rounding_mode="trunc")
|
||||
else:
|
||||
head_dim = embed_dim // num_heads
|
||||
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
||||
if use_separate_proj_weight:
|
||||
# allow MHA to have different embedding dimensions when separate projection weights are used
|
||||
assert key.shape[:2] == value.shape[:2], (
|
||||
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
||||
)
|
||||
else:
|
||||
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
||||
|
||||
#
|
||||
# compute in-projection
|
||||
#
|
||||
if not use_separate_proj_weight:
|
||||
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
||||
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
||||
else:
|
||||
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
||||
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
||||
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
||||
if in_proj_bias is None:
|
||||
b_q = b_k = b_v = None
|
||||
else:
|
||||
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
||||
q, k, v = _in_projection(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
q_proj_weight,
|
||||
k_proj_weight,
|
||||
v_proj_weight,
|
||||
b_q,
|
||||
b_k,
|
||||
b_v,
|
||||
)
|
||||
if cache != None:
|
||||
if cache["first_infer"] == 1:
|
||||
cache["k"][cache["stage"]] = k
|
||||
# print(0,cache["k"].shape)
|
||||
cache["v"][cache["stage"]] = v
|
||||
else: ###12个layer每个都要留自己的cache_kv
|
||||
# print(1,cache["k"].shape)
|
||||
cache["k"][cache["stage"]] = torch.cat(
|
||||
[cache["k"][cache["stage"]], k], 0
|
||||
) ##本来时序是1,但是proj的时候可能transpose了所以时序到0维了
|
||||
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]], v], 0)
|
||||
# print(2, cache["k"].shape)
|
||||
src_len = cache["k"][cache["stage"]].shape[0]
|
||||
k = cache["k"][cache["stage"]]
|
||||
v = cache["v"][cache["stage"]]
|
||||
# if attn_mask is not None:
|
||||
# attn_mask=attn_mask[-1:,]
|
||||
# print(attn_mask.shape,attn_mask)
|
||||
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
||||
# print(2333,cache)
|
||||
# prep attention mask
|
||||
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=q.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
|
||||
if attn_mask is not None:
|
||||
# ensure attn_mask's dim is 3
|
||||
if attn_mask.dim() == 2:
|
||||
correct_2d_size = (tgt_len, src_len)
|
||||
if attn_mask.shape != correct_2d_size:
|
||||
raise RuntimeError(
|
||||
f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}."
|
||||
)
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
elif attn_mask.dim() == 3:
|
||||
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
||||
if attn_mask.shape != correct_3d_size:
|
||||
raise RuntimeError(
|
||||
f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}."
|
||||
)
|
||||
else:
|
||||
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
||||
|
||||
# add bias along batch dimension (currently second)
|
||||
if bias_k is not None and bias_v is not None:
|
||||
assert static_k is None, "bias cannot be added to static key."
|
||||
assert static_v is None, "bias cannot be added to static value."
|
||||
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
||||
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
||||
if attn_mask is not None:
|
||||
attn_mask = pad(attn_mask, (0, 1))
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||||
else:
|
||||
assert bias_k is None
|
||||
assert bias_v is None
|
||||
|
||||
#
|
||||
# reshape q, k, v for multihead attention and make em batch first
|
||||
#
|
||||
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
||||
if static_k is None:
|
||||
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
else:
|
||||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||||
assert static_k.size(0) == bsz * num_heads, (
|
||||
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
||||
)
|
||||
assert static_k.size(2) == head_dim, f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
||||
k = static_k
|
||||
if static_v is None:
|
||||
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||||
else:
|
||||
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||||
assert static_v.size(0) == bsz * num_heads, (
|
||||
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
||||
)
|
||||
assert static_v.size(2) == head_dim, f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
||||
v = static_v
|
||||
|
||||
# add zero attention along batch dimension (now first)
|
||||
if add_zero_attn:
|
||||
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
||||
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
||||
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
||||
if attn_mask is not None:
|
||||
attn_mask = pad(attn_mask, (0, 1))
|
||||
if key_padding_mask is not None:
|
||||
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||||
|
||||
# update source sequence length after adjustments
|
||||
src_len = k.size(1)
|
||||
|
||||
# merge key padding and attention masks
|
||||
if key_padding_mask is not None:
|
||||
assert key_padding_mask.shape == (
|
||||
bsz,
|
||||
src_len,
|
||||
), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
||||
key_padding_mask = (
|
||||
key_padding_mask.view(bsz, 1, 1, src_len).expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
||||
)
|
||||
if attn_mask is None:
|
||||
attn_mask = key_padding_mask
|
||||
else:
|
||||
attn_mask = attn_mask + key_padding_mask
|
||||
|
||||
# adjust dropout probability
|
||||
if not training:
|
||||
dropout_p = 0.0
|
||||
|
||||
#
|
||||
# (deep breath) calculate attention and out projection
|
||||
#
|
||||
|
||||
if need_weights:
|
||||
B, Nt, E = q.shape
|
||||
q_scaled = q / math.sqrt(E)
|
||||
|
||||
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
||||
|
||||
if attn_mask is not None:
|
||||
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
||||
else:
|
||||
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
||||
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
||||
if dropout_p > 0.0:
|
||||
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
||||
|
||||
attn_output = torch.bmm(attn_output_weights, v)
|
||||
|
||||
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
|
||||
# optionally average attention weights over heads
|
||||
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
||||
if average_attn_weights:
|
||||
attn_output_weights = attn_output_weights.mean(dim=1)
|
||||
|
||||
if not is_batched:
|
||||
# squeeze the output if input was unbatched
|
||||
attn_output = attn_output.squeeze(1)
|
||||
attn_output_weights = attn_output_weights.squeeze(0)
|
||||
return attn_output, attn_output_weights
|
||||
else:
|
||||
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
||||
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
||||
# in order to match the input for SDPA of (N, num_heads, L, S)
|
||||
if attn_mask is not None:
|
||||
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
else:
|
||||
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
||||
|
||||
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
||||
k = k.view(bsz, num_heads, src_len, head_dim)
|
||||
v = v.view(bsz, num_heads, src_len, head_dim)
|
||||
|
||||
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=True):
|
||||
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
||||
|
||||
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||||
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||||
if not is_batched:
|
||||
# squeeze the output if input was unbatched
|
||||
attn_output = attn_output.squeeze(1)
|
||||
return attn_output, None
|
||||
85
only_tts/src/AR/modules/patched_mha_with_cache_onnx.py
Normal file
85
only_tts/src/AR/modules/patched_mha_with_cache_onnx.py
Normal file
@ -0,0 +1,85 @@
|
||||
from torch.nn.functional import *
|
||||
from torch.nn.functional import (
|
||||
_canonical_mask,
|
||||
)
|
||||
|
||||
|
||||
def multi_head_attention_forward_patched(
|
||||
query,
|
||||
key,
|
||||
value,
|
||||
embed_dim_to_check: int,
|
||||
num_heads: int,
|
||||
in_proj_weight,
|
||||
in_proj_bias: Optional[Tensor],
|
||||
bias_k: Optional[Tensor],
|
||||
bias_v: Optional[Tensor],
|
||||
add_zero_attn: bool,
|
||||
dropout_p: float,
|
||||
out_proj_weight: Tensor,
|
||||
out_proj_bias: Optional[Tensor],
|
||||
training: bool = True,
|
||||
key_padding_mask: Optional[Tensor] = None,
|
||||
need_weights: bool = True,
|
||||
attn_mask: Optional[Tensor] = None,
|
||||
use_separate_proj_weight: bool = False,
|
||||
q_proj_weight: Optional[Tensor] = None,
|
||||
k_proj_weight: Optional[Tensor] = None,
|
||||
v_proj_weight: Optional[Tensor] = None,
|
||||
static_k: Optional[Tensor] = None,
|
||||
static_v: Optional[Tensor] = None,
|
||||
average_attn_weights: bool = True,
|
||||
is_causal: bool = False,
|
||||
cache=None,
|
||||
) -> Tuple[Tensor, Optional[Tensor]]:
|
||||
# set up shape vars
|
||||
_, _, embed_dim = query.shape
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=query.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
head_dim = embed_dim // num_heads
|
||||
|
||||
proj_qkv = linear(query, in_proj_weight, in_proj_bias)
|
||||
proj_qkv = proj_qkv.unflatten(-1, (3, query.size(-1))).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||||
q, k, v = proj_qkv[0], proj_qkv[1], proj_qkv[2]
|
||||
|
||||
if cache["first_infer"] == 1:
|
||||
cache["k"][cache["stage"]] = k
|
||||
cache["v"][cache["stage"]] = v
|
||||
else:
|
||||
cache["k"][cache["stage"]] = torch.cat([cache["k"][cache["stage"]][:-1], k], 0)
|
||||
cache["v"][cache["stage"]] = torch.cat([cache["v"][cache["stage"]][:-1], v], 0)
|
||||
k = cache["k"][cache["stage"]]
|
||||
v = cache["v"][cache["stage"]]
|
||||
cache["stage"] = (cache["stage"] + 1) % cache["all_stage"]
|
||||
|
||||
attn_mask = _canonical_mask(
|
||||
mask=attn_mask,
|
||||
mask_name="attn_mask",
|
||||
other_type=None,
|
||||
other_name="",
|
||||
target_type=q.dtype,
|
||||
check_other=False,
|
||||
)
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
|
||||
q = q.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
k = k.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
v = v.view(-1, num_heads, head_dim).transpose(0, 1)
|
||||
|
||||
dropout_p = 0.0
|
||||
attn_mask = attn_mask.unsqueeze(0)
|
||||
q = q.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
k = k.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
v = v.view(num_heads, -1, head_dim).unsqueeze(0)
|
||||
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
||||
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(-1, embed_dim)
|
||||
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||||
attn_output = attn_output.view(-1, 1, attn_output.size(1))
|
||||
|
||||
return attn_output
|
||||
320
only_tts/src/AR/modules/scaling.py
Normal file
320
only_tts/src/AR/modules/scaling.py
Normal file
@ -0,0 +1,320 @@
|
||||
# Copyright 2022 Xiaomi Corp. (authors: Daniel Povey)
|
||||
#
|
||||
# See ../../../../LICENSE for clarification regarding multiple authors
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import random
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
class DoubleSwishFunction(torch.autograd.Function):
|
||||
"""
|
||||
double_swish(x) = x * torch.sigmoid(x-1)
|
||||
This is a definition, originally motivated by its close numerical
|
||||
similarity to swish(swish(x)), where swish(x) = x * sigmoid(x).
|
||||
|
||||
Memory-efficient derivative computation:
|
||||
double_swish(x) = x * s, where s(x) = torch.sigmoid(x-1)
|
||||
double_swish'(x) = d/dx double_swish(x) = x * s'(x) + x' * s(x) = x * s'(x) + s(x).
|
||||
Now, s'(x) = s(x) * (1-s(x)).
|
||||
double_swish'(x) = x * s'(x) + s(x).
|
||||
= x * s(x) * (1-s(x)) + s(x).
|
||||
= double_swish(x) * (1-s(x)) + s(x)
|
||||
... so we just need to remember s(x) but not x itself.
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x: Tensor) -> Tensor:
|
||||
requires_grad = x.requires_grad
|
||||
x_dtype = x.dtype
|
||||
if x.dtype == torch.float16:
|
||||
x = x.to(torch.float32)
|
||||
|
||||
s = torch.sigmoid(x - 1.0)
|
||||
y = x * s
|
||||
|
||||
if requires_grad:
|
||||
deriv = y * (1 - s) + s
|
||||
# notes on derivative of x * sigmoid(x - 1):
|
||||
# https://www.wolframalpha.com/input?i=d%2Fdx+%28x+*+sigmoid%28x-1%29%29
|
||||
# min \simeq -0.043638. Take floor as -0.043637 so it's a lower bund
|
||||
# max \simeq 1.1990. Take ceil to be 1.2 so it's an upper bound.
|
||||
# the combination of "+ torch.rand_like(deriv)" and casting to torch.uint8 (which
|
||||
# floors), should be expectation-preserving.
|
||||
floor = -0.043637
|
||||
ceil = 1.2
|
||||
d_scaled = (deriv - floor) * (255.0 / (ceil - floor)) + torch.rand_like(deriv)
|
||||
if __name__ == "__main__":
|
||||
# for self-testing only.
|
||||
assert d_scaled.min() >= 0.0
|
||||
assert d_scaled.max() < 256.0
|
||||
d_int = d_scaled.to(torch.uint8)
|
||||
ctx.save_for_backward(d_int)
|
||||
if x.dtype == torch.float16 or torch.is_autocast_enabled():
|
||||
y = y.to(torch.float16)
|
||||
return y
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, y_grad: Tensor) -> Tensor:
|
||||
(d,) = ctx.saved_tensors
|
||||
# the same constants as used in forward pass.
|
||||
floor = -0.043637
|
||||
ceil = 1.2
|
||||
d = d * ((ceil - floor) / 255.0) + floor
|
||||
return y_grad * d
|
||||
|
||||
|
||||
class DoubleSwish(torch.nn.Module):
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
"""Return double-swish activation function which is an approximation to Swish(Swish(x)),
|
||||
that we approximate closely with x * sigmoid(x-1).
|
||||
"""
|
||||
if torch.jit.is_scripting() or torch.jit.is_tracing():
|
||||
return x * torch.sigmoid(x - 1.0)
|
||||
return DoubleSwishFunction.apply(x)
|
||||
|
||||
|
||||
class ActivationBalancerFunction(torch.autograd.Function):
|
||||
@staticmethod
|
||||
def forward(
|
||||
ctx,
|
||||
x: Tensor,
|
||||
scale_factor: Tensor,
|
||||
sign_factor: Optional[Tensor],
|
||||
channel_dim: int,
|
||||
) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
ctx.channel_dim = channel_dim
|
||||
xgt0 = x > 0
|
||||
if sign_factor is None:
|
||||
ctx.save_for_backward(xgt0, scale_factor)
|
||||
else:
|
||||
ctx.save_for_backward(xgt0, scale_factor, sign_factor)
|
||||
return x
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, x_grad: Tensor) -> Tuple[Tensor, None, None, None]:
|
||||
if len(ctx.saved_tensors) == 3:
|
||||
xgt0, scale_factor, sign_factor = ctx.saved_tensors
|
||||
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
||||
scale_factor = scale_factor.unsqueeze(-1)
|
||||
sign_factor = sign_factor.unsqueeze(-1)
|
||||
factor = sign_factor + scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
||||
else:
|
||||
xgt0, scale_factor = ctx.saved_tensors
|
||||
for _ in range(ctx.channel_dim, x_grad.ndim - 1):
|
||||
scale_factor = scale_factor.unsqueeze(-1)
|
||||
factor = scale_factor * (xgt0.to(x_grad.dtype) - 0.5)
|
||||
neg_delta_grad = x_grad.abs() * factor
|
||||
return (
|
||||
x_grad - neg_delta_grad,
|
||||
None,
|
||||
None,
|
||||
None,
|
||||
)
|
||||
|
||||
|
||||
def _compute_scale_factor(
|
||||
x: Tensor,
|
||||
channel_dim: int,
|
||||
min_abs: float,
|
||||
max_abs: float,
|
||||
gain_factor: float,
|
||||
max_factor: float,
|
||||
) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||
x_abs_mean = torch.mean(x.abs(), dim=sum_dims).to(torch.float32)
|
||||
|
||||
if min_abs == 0.0:
|
||||
below_threshold = 0.0
|
||||
else:
|
||||
# below_threshold is 0 if x_abs_mean > min_abs, can be at most max_factor if
|
||||
# x_abs)_mean , min_abs.
|
||||
below_threshold = ((min_abs - x_abs_mean) * (gain_factor / min_abs)).clamp(min=0, max=max_factor)
|
||||
|
||||
above_threshold = ((x_abs_mean - max_abs) * (gain_factor / max_abs)).clamp(min=0, max=max_factor)
|
||||
|
||||
return below_threshold - above_threshold
|
||||
|
||||
|
||||
def _compute_sign_factor(
|
||||
x: Tensor,
|
||||
channel_dim: int,
|
||||
min_positive: float,
|
||||
max_positive: float,
|
||||
gain_factor: float,
|
||||
max_factor: float,
|
||||
) -> Tensor:
|
||||
if channel_dim < 0:
|
||||
channel_dim += x.ndim
|
||||
sum_dims = [d for d in range(x.ndim) if d != channel_dim]
|
||||
proportion_positive = torch.mean((x > 0).to(torch.float32), dim=sum_dims)
|
||||
if min_positive == 0.0:
|
||||
factor1 = 0.0
|
||||
else:
|
||||
# 0 if proportion_positive >= min_positive, else can be
|
||||
# as large as max_factor.
|
||||
factor1 = ((min_positive - proportion_positive) * (gain_factor / min_positive)).clamp_(min=0, max=max_factor)
|
||||
|
||||
if max_positive == 1.0:
|
||||
factor2 = 0.0
|
||||
else:
|
||||
# 0 if self.proportion_positive <= max_positive, else can be
|
||||
# as large as -max_factor.
|
||||
factor2 = ((proportion_positive - max_positive) * (gain_factor / (1.0 - max_positive))).clamp_(
|
||||
min=0, max=max_factor
|
||||
)
|
||||
sign_factor = factor1 - factor2
|
||||
# require min_positive != 0 or max_positive != 1:
|
||||
assert not isinstance(sign_factor, float)
|
||||
return sign_factor
|
||||
|
||||
|
||||
class ActivationBalancer(torch.nn.Module):
|
||||
"""
|
||||
Modifies the backpropped derivatives of a function to try to encourage, for
|
||||
each channel, that it is positive at least a proportion `threshold` of the
|
||||
time. It does this by multiplying negative derivative values by up to
|
||||
(1+max_factor), and positive derivative values by up to (1-max_factor),
|
||||
interpolated from 1 at the threshold to those extremal values when none
|
||||
of the inputs are positive.
|
||||
|
||||
Args:
|
||||
num_channels: the number of channels
|
||||
channel_dim: the dimension/axis corresponding to the channel, e.g.
|
||||
-1, 0, 1, 2; will be interpreted as an offset from x.ndim if negative.
|
||||
min_positive: the minimum, per channel, of the proportion of the time
|
||||
that (x > 0), below which we start to modify the derivatives.
|
||||
max_positive: the maximum, per channel, of the proportion of the time
|
||||
that (x > 0), above which we start to modify the derivatives.
|
||||
max_factor: the maximum factor by which we modify the derivatives for
|
||||
either the sign constraint or the magnitude constraint;
|
||||
e.g. with max_factor=0.02, the the derivatives would be multiplied by
|
||||
values in the range [0.98..1.02].
|
||||
sign_gain_factor: determines the 'gain' with which we increase the
|
||||
change in gradient once the constraints on min_positive and max_positive
|
||||
are violated.
|
||||
scale_gain_factor: determines the 'gain' with which we increase the
|
||||
change in gradient once the constraints on min_abs and max_abs
|
||||
are violated.
|
||||
min_abs: the minimum average-absolute-value difference from the mean
|
||||
value per channel, which we allow, before we start to modify
|
||||
the derivatives to prevent this.
|
||||
max_abs: the maximum average-absolute-value difference from the mean
|
||||
value per channel, which we allow, before we start to modify
|
||||
the derivatives to prevent this.
|
||||
min_prob: determines the minimum probability with which we modify the
|
||||
gradients for the {min,max}_positive and {min,max}_abs constraints,
|
||||
on each forward(). This is done randomly to prevent all layers
|
||||
from doing it at the same time. Early in training we may use
|
||||
higher probabilities than this; it will decay to this value.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
num_channels: int,
|
||||
channel_dim: int,
|
||||
min_positive: float = 0.05,
|
||||
max_positive: float = 0.95,
|
||||
max_factor: float = 0.04,
|
||||
sign_gain_factor: float = 0.01,
|
||||
scale_gain_factor: float = 0.02,
|
||||
min_abs: float = 0.2,
|
||||
max_abs: float = 100.0,
|
||||
min_prob: float = 0.1,
|
||||
):
|
||||
super(ActivationBalancer, self).__init__()
|
||||
self.num_channels = num_channels
|
||||
self.channel_dim = channel_dim
|
||||
self.min_positive = min_positive
|
||||
self.max_positive = max_positive
|
||||
self.max_factor = max_factor
|
||||
self.min_abs = min_abs
|
||||
self.max_abs = max_abs
|
||||
self.min_prob = min_prob
|
||||
self.sign_gain_factor = sign_gain_factor
|
||||
self.scale_gain_factor = scale_gain_factor
|
||||
|
||||
# count measures how many times the forward() function has been called.
|
||||
# We occasionally sync this to a tensor called `count`, that exists to
|
||||
# make sure it is synced to disk when we load and save the model.
|
||||
self.cpu_count = 0
|
||||
self.register_buffer("count", torch.tensor(0, dtype=torch.int64))
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
if torch.jit.is_scripting() or not x.requires_grad or torch.jit.is_tracing():
|
||||
return _no_op(x)
|
||||
|
||||
count = self.cpu_count
|
||||
self.cpu_count += 1
|
||||
|
||||
if random.random() < 0.01:
|
||||
# Occasionally sync self.cpu_count with self.count.
|
||||
# count affects the decay of 'prob'. don't do this on every iter,
|
||||
# because syncing with the GPU is slow.
|
||||
self.cpu_count = max(self.cpu_count, self.count.item())
|
||||
self.count.fill_(self.cpu_count)
|
||||
|
||||
# the prob of doing some work exponentially decreases from 0.5 till it hits
|
||||
# a floor at min_prob (==0.1, by default)
|
||||
prob = max(self.min_prob, 0.5 ** (1 + (count / 4000.0)))
|
||||
|
||||
if random.random() < prob:
|
||||
sign_gain_factor = 0.5
|
||||
if self.min_positive != 0.0 or self.max_positive != 1.0:
|
||||
sign_factor = _compute_sign_factor(
|
||||
x,
|
||||
self.channel_dim,
|
||||
self.min_positive,
|
||||
self.max_positive,
|
||||
gain_factor=self.sign_gain_factor / prob,
|
||||
max_factor=self.max_factor,
|
||||
)
|
||||
else:
|
||||
sign_factor = None
|
||||
|
||||
scale_factor = _compute_scale_factor(
|
||||
x.detach(),
|
||||
self.channel_dim,
|
||||
min_abs=self.min_abs,
|
||||
max_abs=self.max_abs,
|
||||
gain_factor=self.scale_gain_factor / prob,
|
||||
max_factor=self.max_factor,
|
||||
)
|
||||
return ActivationBalancerFunction.apply(
|
||||
x,
|
||||
scale_factor,
|
||||
sign_factor,
|
||||
self.channel_dim,
|
||||
)
|
||||
else:
|
||||
return _no_op(x)
|
||||
|
||||
|
||||
def BalancedDoubleSwish(d_model, channel_dim=-1, max_abs=10.0, min_prob=0.25) -> nn.Sequential:
|
||||
"""
|
||||
ActivationBalancer -> DoubleSwish
|
||||
"""
|
||||
balancer = ActivationBalancer(d_model, channel_dim=channel_dim, max_abs=max_abs, min_prob=min_prob)
|
||||
return nn.Sequential(
|
||||
balancer,
|
||||
DoubleSwish(),
|
||||
)
|
||||
362
only_tts/src/AR/modules/transformer.py
Normal file
362
only_tts/src/AR/modules/transformer.py
Normal file
@ -0,0 +1,362 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
||||
import copy
|
||||
import numbers
|
||||
from functools import partial
|
||||
from typing import Any
|
||||
from typing import Callable
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from AR.modules.activation import MultiheadAttention
|
||||
from AR.modules.scaling import BalancedDoubleSwish
|
||||
from torch import nn
|
||||
from torch import Tensor
|
||||
from torch.nn import functional as F
|
||||
|
||||
_shape_t = Union[int, List[int], torch.Size]
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
||||
normalized_shape: Tuple[int, ...]
|
||||
eps: float
|
||||
elementwise_affine: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape: _shape_t,
|
||||
eps: float = 1e-5,
|
||||
elementwise_affine: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
# mypy error: incompatible types in assignment
|
||||
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
self.bias = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
if self.elementwise_affine:
|
||||
nn.init.ones_(self.weight)
|
||||
nn.init.zeros_(self.bias)
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
return (
|
||||
F.layer_norm(
|
||||
input,
|
||||
self.normalized_shape,
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps,
|
||||
),
|
||||
embedding,
|
||||
)
|
||||
|
||||
assert embedding is None
|
||||
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
||||
|
||||
|
||||
class IdentityNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float = 1e-5,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(IdentityNorm, self).__init__()
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
return input
|
||||
|
||||
assert embedding is None
|
||||
return input
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
||||
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
||||
(and convert back on output). This will improve the overall performance of
|
||||
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = transformer_encoder(src)
|
||||
"""
|
||||
|
||||
__constants__ = ["norm"]
|
||||
|
||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||
super(TransformerEncoder, self).__init__()
|
||||
self.layers = _get_clones(encoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
return_layer_states: bool = False,
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layers in turn.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder (required).
|
||||
mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
return_layer_states: return layers' state (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
if return_layer_states:
|
||||
layer_states = [] # layers' output
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
cache=cache,
|
||||
)
|
||||
layer_states.append(output[0])
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return layer_states, output
|
||||
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
cache=cache,
|
||||
)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
__constants__ = ["batch_first", "norm_first"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
||||
batch_first: bool = False,
|
||||
norm_first: bool = False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
linear1_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear2_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear1_feedforward_cls: nn.Module = nn.Linear,
|
||||
linear2_feedforward_cls: nn.Module = nn.Linear,
|
||||
layer_norm_cls: nn.Module = LayerNorm,
|
||||
layer_norm_eps: float = 1e-5,
|
||||
adaptive_layer_norm=False,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
# print(233333333333,d_model,nhead)
|
||||
# import os
|
||||
# os._exit(2333333)
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model, # 512 16
|
||||
nhead,
|
||||
dropout=dropout,
|
||||
batch_first=batch_first,
|
||||
linear1_cls=linear1_self_attention_cls,
|
||||
linear2_cls=linear2_self_attention_cls,
|
||||
**factory_kwargs,
|
||||
)
|
||||
|
||||
# Implementation of Feedforward model
|
||||
self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward, **factory_kwargs)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model, **factory_kwargs)
|
||||
|
||||
self.norm_first = norm_first
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
|
||||
# Legacy string support for activation function.
|
||||
if isinstance(activation, str):
|
||||
activation = _get_activation_fn(activation)
|
||||
elif isinstance(activation, partial):
|
||||
activation = activation(d_model)
|
||||
elif activation == BalancedDoubleSwish:
|
||||
activation = BalancedDoubleSwish(d_model)
|
||||
|
||||
# # We can't test self.activation in forward() in TorchScript,
|
||||
# # so stash some information about it instead.
|
||||
# if activation is F.relu or isinstance(activation, torch.nn.ReLU):
|
||||
# self.activation_relu_or_gelu = 1
|
||||
# elif activation is F.gelu or isinstance(activation, torch.nn.GELU):
|
||||
# self.activation_relu_or_gelu = 2
|
||||
# else:
|
||||
# self.activation_relu_or_gelu = 0
|
||||
self.activation = activation
|
||||
|
||||
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
if layer_norm_cls == IdentityNorm:
|
||||
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
else:
|
||||
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
if adaptive_layer_norm:
|
||||
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
||||
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
||||
else:
|
||||
self.norm1 = norm1
|
||||
self.norm2 = norm2
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||
if not hasattr(self, "activation"):
|
||||
self.activation = F.relu
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
r"""Pass the input through the encoder layer.
|
||||
|
||||
Args:
|
||||
src: the sequence to the encoder layer (required).
|
||||
src_mask: the mask for the src sequence (optional).
|
||||
src_key_padding_mask: the mask for the src keys per batch (optional).
|
||||
|
||||
Shape:
|
||||
see the docs in Transformer class.
|
||||
"""
|
||||
x, stage_embedding = src, None
|
||||
is_src_tuple = False
|
||||
if isinstance(src, tuple):
|
||||
x, stage_embedding = src
|
||||
is_src_tuple = True
|
||||
|
||||
if src_key_padding_mask is not None:
|
||||
_skpm_dtype = src_key_padding_mask.dtype
|
||||
if _skpm_dtype != torch.bool and not torch.is_floating_point(src_key_padding_mask):
|
||||
raise AssertionError("only bool and floating types of key_padding_mask are supported")
|
||||
|
||||
if self.norm_first:
|
||||
x = x + self._sa_block(
|
||||
self.norm1(x, stage_embedding),
|
||||
src_mask,
|
||||
src_key_padding_mask,
|
||||
cache=cache,
|
||||
)
|
||||
x = x + self._ff_block(self.norm2(x, stage_embedding))
|
||||
else:
|
||||
x = self.norm1(
|
||||
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
||||
stage_embedding,
|
||||
)
|
||||
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
||||
|
||||
if is_src_tuple:
|
||||
return (x, stage_embedding)
|
||||
return x
|
||||
|
||||
# self-attention block
|
||||
def _sa_block(
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
# print(x.shape,attn_mask.shape,key_padding_mask)
|
||||
# torch.Size([1, 188, 512]) torch.Size([188, 188]) None
|
||||
# import os
|
||||
# os._exit(23333)
|
||||
x = self.self_attn(
|
||||
x,
|
||||
x,
|
||||
x,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=False,
|
||||
cache=cache,
|
||||
)[0]
|
||||
return self.dropout1(x)
|
||||
|
||||
# feed forward block
|
||||
def _ff_block(self, x: Tensor) -> Tensor:
|
||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
||||
return self.dropout2(x)
|
||||
|
||||
|
||||
class AdaptiveLayerNorm(nn.Module):
|
||||
r"""Adaptive Layer Normalization"""
|
||||
|
||||
def __init__(self, d_model, norm) -> None:
|
||||
super(AdaptiveLayerNorm, self).__init__()
|
||||
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
||||
self.norm = norm
|
||||
self.d_model = d_model
|
||||
self.eps = self.norm.eps
|
||||
|
||||
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return (weight * self.norm(input) + bias, embedding)
|
||||
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return weight * self.norm(input) + bias
|
||||
|
||||
|
||||
def _get_clones(module, N):
|
||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
||||
281
only_tts/src/AR/modules/transformer_onnx.py
Normal file
281
only_tts/src/AR/modules/transformer_onnx.py
Normal file
@ -0,0 +1,281 @@
|
||||
# modified from https://github.com/lifeiteng/vall-e/blob/main/valle/modules/transformer.py
|
||||
import copy
|
||||
import numbers
|
||||
from functools import partial
|
||||
from typing import Any
|
||||
from typing import Callable
|
||||
from typing import List
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import torch
|
||||
from AR.modules.activation_onnx import MultiheadAttention
|
||||
from AR.modules.scaling import BalancedDoubleSwish
|
||||
from torch import nn
|
||||
from torch import Tensor
|
||||
from torch.nn import functional as F
|
||||
|
||||
_shape_t = Union[int, List[int], torch.Size]
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
__constants__ = ["normalized_shape", "eps", "elementwise_affine"]
|
||||
normalized_shape: Tuple[int, ...]
|
||||
eps: float
|
||||
elementwise_affine: bool
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
normalized_shape: _shape_t,
|
||||
eps: float = 1e-5,
|
||||
elementwise_affine: bool = True,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(LayerNorm, self).__init__()
|
||||
if isinstance(normalized_shape, numbers.Integral):
|
||||
# mypy error: incompatible types in assignment
|
||||
normalized_shape = (normalized_shape,) # type: ignore[assignment]
|
||||
self.normalized_shape = tuple(normalized_shape) # type: ignore[arg-type]
|
||||
self.eps = eps
|
||||
self.elementwise_affine = elementwise_affine
|
||||
if self.elementwise_affine:
|
||||
self.weight = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
self.bias = nn.Parameter(torch.empty(self.normalized_shape, **factory_kwargs))
|
||||
else:
|
||||
self.register_parameter("weight", None)
|
||||
self.register_parameter("bias", None)
|
||||
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
if self.elementwise_affine:
|
||||
nn.init.ones_(self.weight)
|
||||
nn.init.zeros_(self.bias)
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
return (
|
||||
F.layer_norm(
|
||||
input,
|
||||
self.normalized_shape,
|
||||
self.weight,
|
||||
self.bias,
|
||||
self.eps,
|
||||
),
|
||||
embedding,
|
||||
)
|
||||
|
||||
assert embedding is None
|
||||
return F.layer_norm(input, self.normalized_shape, self.weight, self.bias, self.eps)
|
||||
|
||||
def extra_repr(self) -> str:
|
||||
return "{normalized_shape}, eps={eps}, elementwise_affine={elementwise_affine}".format(**self.__dict__)
|
||||
|
||||
|
||||
class IdentityNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
eps: float = 1e-5,
|
||||
device=None,
|
||||
dtype=None,
|
||||
) -> None:
|
||||
super(IdentityNorm, self).__init__()
|
||||
|
||||
def forward(self, input: Tensor, embedding: Any = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
return input
|
||||
|
||||
assert embedding is None
|
||||
return input
|
||||
|
||||
|
||||
class TransformerEncoder(nn.Module):
|
||||
r"""TransformerEncoder is a stack of N encoder layers. Users can build the
|
||||
BERT(https://arxiv.org/abs/1810.04805) model with corresponding parameters.
|
||||
|
||||
Args:
|
||||
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
|
||||
num_layers: the number of sub-encoder-layers in the encoder (required).
|
||||
norm: the layer normalization component (optional).
|
||||
enable_nested_tensor: if True, input will automatically convert to nested tensor
|
||||
(and convert back on output). This will improve the overall performance of
|
||||
TransformerEncoder when padding rate is high. Default: ``True`` (enabled).
|
||||
|
||||
Examples::
|
||||
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
|
||||
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
|
||||
>>> src = torch.rand(10, 32, 512)
|
||||
>>> out = transformer_encoder(src)
|
||||
"""
|
||||
|
||||
__constants__ = ["norm"]
|
||||
|
||||
def __init__(self, encoder_layer, num_layers, norm=None):
|
||||
super(TransformerEncoder, self).__init__()
|
||||
self.layers = _get_clones(encoder_layer, num_layers)
|
||||
self.num_layers = num_layers
|
||||
self.norm = norm
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
return_layer_states: bool = False,
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
output = src
|
||||
for mod in self.layers:
|
||||
output = mod(
|
||||
output,
|
||||
src_mask=mask,
|
||||
src_key_padding_mask=src_key_padding_mask,
|
||||
cache=cache,
|
||||
)
|
||||
|
||||
if self.norm is not None:
|
||||
output = self.norm(output)
|
||||
|
||||
return output
|
||||
|
||||
|
||||
class TransformerEncoderLayer(nn.Module):
|
||||
__constants__ = ["batch_first", "norm_first"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
d_model: int,
|
||||
nhead: int,
|
||||
dim_feedforward: int = 2048,
|
||||
dropout: float = 0.1,
|
||||
activation: Union[str, Callable[[Tensor], Tensor]] = F.relu,
|
||||
batch_first: bool = False,
|
||||
norm_first: bool = False,
|
||||
device=None,
|
||||
dtype=None,
|
||||
linear1_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear2_self_attention_cls: nn.Module = nn.Linear,
|
||||
linear1_feedforward_cls: nn.Module = nn.Linear,
|
||||
linear2_feedforward_cls: nn.Module = nn.Linear,
|
||||
layer_norm_cls: nn.Module = LayerNorm,
|
||||
layer_norm_eps: float = 1e-5,
|
||||
adaptive_layer_norm=False,
|
||||
) -> None:
|
||||
factory_kwargs = {"device": device, "dtype": dtype}
|
||||
super(TransformerEncoderLayer, self).__init__()
|
||||
self.self_attn = MultiheadAttention(
|
||||
d_model, # 512 16
|
||||
nhead,
|
||||
dropout=dropout,
|
||||
batch_first=batch_first,
|
||||
linear1_cls=linear1_self_attention_cls,
|
||||
linear2_cls=linear2_self_attention_cls,
|
||||
**factory_kwargs,
|
||||
)
|
||||
self.linear1 = linear1_feedforward_cls(d_model, dim_feedforward, **factory_kwargs)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.linear2 = linear2_feedforward_cls(dim_feedforward, d_model, **factory_kwargs)
|
||||
self.norm_first = norm_first
|
||||
self.dropout1 = nn.Dropout(dropout)
|
||||
self.dropout2 = nn.Dropout(dropout)
|
||||
if isinstance(activation, str):
|
||||
activation = _get_activation_fn(activation)
|
||||
elif isinstance(activation, partial):
|
||||
activation = activation(d_model)
|
||||
elif activation == BalancedDoubleSwish:
|
||||
activation = BalancedDoubleSwish(d_model)
|
||||
self.activation = activation
|
||||
|
||||
norm1 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
if layer_norm_cls == IdentityNorm:
|
||||
norm2 = BalancedBasicNorm(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
else:
|
||||
norm2 = layer_norm_cls(d_model, eps=layer_norm_eps, **factory_kwargs)
|
||||
|
||||
if adaptive_layer_norm:
|
||||
self.norm1 = AdaptiveLayerNorm(d_model, norm1)
|
||||
self.norm2 = AdaptiveLayerNorm(d_model, norm2)
|
||||
else:
|
||||
self.norm1 = norm1
|
||||
self.norm2 = norm2
|
||||
|
||||
def __setstate__(self, state):
|
||||
super(TransformerEncoderLayer, self).__setstate__(state)
|
||||
if not hasattr(self, "activation"):
|
||||
self.activation = F.relu
|
||||
|
||||
def forward(
|
||||
self,
|
||||
src: Tensor,
|
||||
src_mask: Optional[Tensor] = None,
|
||||
src_key_padding_mask: Optional[Tensor] = None,
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
x = src
|
||||
stage_embedding = None
|
||||
x = self.norm1(
|
||||
x + self._sa_block(x, src_mask, src_key_padding_mask, cache=cache),
|
||||
stage_embedding,
|
||||
)
|
||||
x = self.norm2(x + self._ff_block(x), stage_embedding)
|
||||
|
||||
return x
|
||||
|
||||
def _sa_block(
|
||||
self,
|
||||
x: Tensor,
|
||||
attn_mask: Optional[Tensor],
|
||||
key_padding_mask: Optional[Tensor],
|
||||
cache=None,
|
||||
) -> Tensor:
|
||||
x = self.self_attn(
|
||||
x,
|
||||
x,
|
||||
x,
|
||||
attn_mask=attn_mask,
|
||||
key_padding_mask=key_padding_mask,
|
||||
need_weights=False,
|
||||
cache=cache,
|
||||
)
|
||||
return self.dropout1(x)
|
||||
|
||||
def _ff_block(self, x: Tensor) -> Tensor:
|
||||
x = self.linear2(self.dropout(self.activation(self.linear1(x))))
|
||||
return self.dropout2(x)
|
||||
|
||||
|
||||
class AdaptiveLayerNorm(nn.Module):
|
||||
r"""Adaptive Layer Normalization"""
|
||||
|
||||
def __init__(self, d_model, norm) -> None:
|
||||
super(AdaptiveLayerNorm, self).__init__()
|
||||
self.project_layer = nn.Linear(d_model, 2 * d_model)
|
||||
self.norm = norm
|
||||
self.d_model = d_model
|
||||
self.eps = self.norm.eps
|
||||
|
||||
def forward(self, input: Tensor, embedding: Tensor = None) -> Tensor:
|
||||
if isinstance(input, tuple):
|
||||
input, embedding = input
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return (weight * self.norm(input) + bias, embedding)
|
||||
|
||||
weight, bias = torch.split(
|
||||
self.project_layer(embedding),
|
||||
split_size_or_sections=self.d_model,
|
||||
dim=-1,
|
||||
)
|
||||
return weight * self.norm(input) + bias
|
||||
|
||||
|
||||
def _get_clones(module, N):
|
||||
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
|
||||
0
only_tts/src/AR/text_processing/__init__.py
Normal file
0
only_tts/src/AR/text_processing/__init__.py
Normal file
72
only_tts/src/AR/text_processing/phonemizer.py
Normal file
72
only_tts/src/AR/text_processing/phonemizer.py
Normal file
@ -0,0 +1,72 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/phonemizer.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
import itertools
|
||||
import re
|
||||
from typing import Dict
|
||||
from typing import List
|
||||
|
||||
import regex
|
||||
from gruut import sentences
|
||||
from gruut.const import Sentence
|
||||
from gruut.const import Word
|
||||
from AR.text_processing.symbols import SYMBOL_TO_ID
|
||||
|
||||
|
||||
class GruutPhonemizer:
|
||||
def __init__(self, language: str):
|
||||
self._phonemizer = sentences
|
||||
self.lang = language
|
||||
self.symbol_to_id = SYMBOL_TO_ID
|
||||
self._special_cases_dict: Dict[str] = {
|
||||
r"\.\.\.": "... ",
|
||||
";": "; ",
|
||||
":": ": ",
|
||||
",": ", ",
|
||||
r"\.": ". ",
|
||||
"!": "! ",
|
||||
r"\?": "? ",
|
||||
"—": "—",
|
||||
"…": "… ",
|
||||
"«": "«",
|
||||
"»": "»",
|
||||
}
|
||||
self._punctuation_regexp: str = rf"([{''.join(self._special_cases_dict.keys())}])"
|
||||
|
||||
def _normalize_punctuation(self, text: str) -> str:
|
||||
text = regex.sub(rf"\pZ+{self._punctuation_regexp}", r"\1", text)
|
||||
text = regex.sub(rf"{self._punctuation_regexp}(\pL)", r"\1 \2", text)
|
||||
text = regex.sub(r"\pZ+", r" ", text)
|
||||
return text.strip()
|
||||
|
||||
def _convert_punctuation(self, word: Word) -> str:
|
||||
if not word.phonemes:
|
||||
return ""
|
||||
if word.phonemes[0] in ["‖", "|"]:
|
||||
return word.text.strip()
|
||||
|
||||
phonemes = "".join(word.phonemes)
|
||||
# remove modifier characters ˈˌː with regex
|
||||
phonemes = re.sub(r"[ˈˌː͡]", "", phonemes)
|
||||
return phonemes.strip()
|
||||
|
||||
def phonemize(self, text: str, espeak: bool = False) -> str:
|
||||
text_to_phonemize: str = self._normalize_punctuation(text)
|
||||
sents: List[Sentence] = [sent for sent in self._phonemizer(text_to_phonemize, lang="en-us", espeak=espeak)]
|
||||
words: List[str] = [self._convert_punctuation(word) for word in itertools.chain(*sents)]
|
||||
return " ".join(words)
|
||||
|
||||
def transform(self, phonemes):
|
||||
# convert phonemes to ids
|
||||
# dictionary is in symbols.py
|
||||
return [self.symbol_to_id[p] for p in phonemes if p in self.symbol_to_id.keys()]
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
phonemizer = GruutPhonemizer("en-us")
|
||||
# text -> IPA
|
||||
phonemes = phonemizer.phonemize("Hello, wor-ld ?")
|
||||
print("phonemes:", phonemes)
|
||||
print("len(phonemes):", len(phonemes))
|
||||
phoneme_ids = phonemizer.transform(phonemes)
|
||||
print("phoneme_ids:", phoneme_ids)
|
||||
print("len(phoneme_ids):", len(phoneme_ids))
|
||||
12
only_tts/src/AR/text_processing/symbols.py
Normal file
12
only_tts/src/AR/text_processing/symbols.py
Normal file
@ -0,0 +1,12 @@
|
||||
# modified from https://github.com/yangdongchao/SoundStorm/blob/master/soundstorm/s1/AR/text_processing/symbols.py
|
||||
# reference: https://github.com/lifeiteng/vall-e
|
||||
PAD = "_"
|
||||
PUNCTUATION = ';:,.!?¡¿—…"«»“” '
|
||||
LETTERS = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"
|
||||
IPA_LETTERS = (
|
||||
"ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ"
|
||||
)
|
||||
SYMBOLS = [PAD] + list(PUNCTUATION) + list(LETTERS) + list(IPA_LETTERS)
|
||||
SPACE_ID = SYMBOLS.index(" ")
|
||||
SYMBOL_TO_ID = {s: i for i, s in enumerate(SYMBOLS)}
|
||||
ID_TO_SYMBOL = {i: s for i, s in enumerate(SYMBOLS)}
|
||||
36
only_tts/src/AR/utils/__init__.py
Normal file
36
only_tts/src/AR/utils/__init__.py
Normal file
@ -0,0 +1,36 @@
|
||||
import re
|
||||
|
||||
|
||||
def str2bool(str):
|
||||
return True if str.lower() == "true" else False
|
||||
|
||||
|
||||
def get_newest_ckpt(string_list):
|
||||
# 定义一个正则表达式模式,用于匹配字符串中的数字
|
||||
pattern = r"epoch=(\d+)-step=(\d+)\.ckpt"
|
||||
|
||||
# 使用正则表达式提取每个字符串中的数字信息,并创建一个包含元组的列表
|
||||
extracted_info = []
|
||||
for string in string_list:
|
||||
match = re.match(pattern, string)
|
||||
if match:
|
||||
epoch = int(match.group(1))
|
||||
step = int(match.group(2))
|
||||
extracted_info.append((epoch, step, string))
|
||||
# 按照 epoch 后面的数字和 step 后面的数字进行排序
|
||||
sorted_info = sorted(extracted_info, key=lambda x: (x[0], x[1]), reverse=True)
|
||||
# 获取最新的 ckpt 文件名
|
||||
newest_ckpt = sorted_info[0][2]
|
||||
return newest_ckpt
|
||||
|
||||
|
||||
# 文本存在且不为空时 return True
|
||||
def check_txt_file(file_path):
|
||||
try:
|
||||
with open(file_path, "r") as file:
|
||||
text = file.readline().strip()
|
||||
assert text.strip() != ""
|
||||
return text
|
||||
except Exception:
|
||||
return False
|
||||
return False
|
||||
39
only_tts/src/AR/utils/initialize.py
Normal file
39
only_tts/src/AR/utils/initialize.py
Normal file
@ -0,0 +1,39 @@
|
||||
#!/usr/bin/env python3
|
||||
"""Initialize modules for espnet2 neural networks."""
|
||||
|
||||
import torch
|
||||
from typeguard import check_argument_types
|
||||
|
||||
|
||||
def initialize(model: torch.nn.Module, init: str):
|
||||
"""Initialize weights of a neural network module.
|
||||
|
||||
Parameters are initialized using the given method or distribution.
|
||||
|
||||
Custom initialization routines can be implemented into submodules
|
||||
as function `espnet_initialization_fn` within the custom module.
|
||||
|
||||
Args:
|
||||
model: Target.
|
||||
init: Method of initialization.
|
||||
"""
|
||||
assert check_argument_types()
|
||||
print("init with", init)
|
||||
|
||||
# weight init
|
||||
for p in model.parameters():
|
||||
if p.dim() > 1:
|
||||
if init == "xavier_uniform":
|
||||
torch.nn.init.xavier_uniform_(p.data)
|
||||
elif init == "xavier_normal":
|
||||
torch.nn.init.xavier_normal_(p.data)
|
||||
elif init == "kaiming_uniform":
|
||||
torch.nn.init.kaiming_uniform_(p.data, nonlinearity="relu")
|
||||
elif init == "kaiming_normal":
|
||||
torch.nn.init.kaiming_normal_(p.data, nonlinearity="relu")
|
||||
else:
|
||||
raise ValueError("Unknown initialization: " + init)
|
||||
# bias init
|
||||
for name, p in model.named_parameters():
|
||||
if ".bias" in name and p.dim() == 1:
|
||||
p.data.zero_()
|
||||
30
only_tts/src/AR/utils/io.py
Normal file
30
only_tts/src/AR/utils/io.py
Normal file
@ -0,0 +1,30 @@
|
||||
import sys
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
|
||||
def load_yaml_config(path):
|
||||
with open(path) as f:
|
||||
config = yaml.full_load(f)
|
||||
return config
|
||||
|
||||
|
||||
def save_config_to_yaml(config, path):
|
||||
assert path.endswith(".yaml")
|
||||
with open(path, "w") as f:
|
||||
f.write(yaml.dump(config))
|
||||
f.close()
|
||||
|
||||
|
||||
def write_args(args, path):
|
||||
args_dict = dict((name, getattr(args, name)) for name in dir(args) if not name.startswith("_"))
|
||||
with open(path, "a") as args_file:
|
||||
args_file.write("==> torch version: {}\n".format(torch.__version__))
|
||||
args_file.write("==> cudnn version: {}\n".format(torch.backends.cudnn.version()))
|
||||
args_file.write("==> Cmd:\n")
|
||||
args_file.write(str(sys.argv))
|
||||
args_file.write("\n==> args:\n")
|
||||
for k, v in sorted(args_dict.items()):
|
||||
args_file.write(" %s: %s\n" % (str(k), str(v)))
|
||||
args_file.close()
|
||||
1531
only_tts/src/TTS_infer_pack/TTS.py
Normal file
1531
only_tts/src/TTS_infer_pack/TTS.py
Normal file
File diff suppressed because it is too large
Load Diff
208
only_tts/src/TTS_infer_pack/TextPreprocessor.py
Normal file
208
only_tts/src/TTS_infer_pack/TextPreprocessor.py
Normal file
@ -0,0 +1,208 @@
|
||||
import os
|
||||
import sys
|
||||
import threading
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
now_dir = os.getcwd()
|
||||
sys.path.append(now_dir)
|
||||
|
||||
import re
|
||||
import torch
|
||||
from typing import Dict, List, Tuple
|
||||
from text.cleaner import clean_text
|
||||
from text import cleaned_text_to_sequence
|
||||
from transformers import AutoModelForMaskedLM, AutoTokenizer
|
||||
from TTS_infer_pack.text_segmentation_method import split_big_text, splits, get_method as get_seg_method
|
||||
|
||||
from tools.i18n.i18n import I18nAuto, scan_language_list
|
||||
|
||||
language = os.environ.get("language", "Auto")
|
||||
language = sys.argv[-1] if sys.argv[-1] in scan_language_list() else language
|
||||
i18n = I18nAuto(language=language)
|
||||
punctuation = set(["!", "?", "…", ",", ".", "-"])
|
||||
|
||||
|
||||
def get_first(text: str) -> str:
|
||||
pattern = "[" + "".join(re.escape(sep) for sep in splits) + "]"
|
||||
text = re.split(pattern, text)[0].strip()
|
||||
return text
|
||||
|
||||
|
||||
def merge_short_text_in_array(texts: str, threshold: int) -> list:
|
||||
if (len(texts)) < 2:
|
||||
return texts
|
||||
result = []
|
||||
text = ""
|
||||
for ele in texts:
|
||||
text += ele
|
||||
if len(text) >= threshold:
|
||||
result.append(text)
|
||||
text = ""
|
||||
if len(text) > 0:
|
||||
if len(result) == 0:
|
||||
result.append(text)
|
||||
else:
|
||||
result[len(result) - 1] += text
|
||||
return result
|
||||
|
||||
|
||||
class TextPreprocessor:
|
||||
def __init__(self, bert_model: AutoModelForMaskedLM, tokenizer: AutoTokenizer, device: torch.device):
|
||||
self.bert_model = bert_model
|
||||
self.tokenizer = tokenizer
|
||||
self.device = device
|
||||
self.bert_lock = threading.RLock()
|
||||
|
||||
def preprocess(self, text: str, lang: str, text_split_method: str, version: str = "v2") -> List[Dict]:
|
||||
print(f"############ {i18n('切分文本')} ############")
|
||||
text = self.replace_consecutive_punctuation(text)
|
||||
texts = self.pre_seg_text(text, lang, text_split_method)
|
||||
result = []
|
||||
print(f"############ {i18n('提取文本Bert特征')} ############")
|
||||
for text in tqdm(texts):
|
||||
phones, bert_features, norm_text = self.segment_and_extract_feature_for_text(text, lang, version)
|
||||
if phones is None or norm_text == "":
|
||||
continue
|
||||
res = {
|
||||
"phones": phones,
|
||||
"bert_features": bert_features,
|
||||
"norm_text": norm_text,
|
||||
}
|
||||
result.append(res)
|
||||
return result
|
||||
|
||||
def pre_seg_text(self, text: str, lang: str, text_split_method: str):
|
||||
text = text.strip("\n")
|
||||
if len(text) == 0:
|
||||
return []
|
||||
if text[0] not in splits and len(get_first(text)) < 4:
|
||||
text = "。" + text if lang != "en" else "." + text
|
||||
print(i18n("实际输入的目标文本:"))
|
||||
print(text)
|
||||
|
||||
seg_method = get_seg_method(text_split_method)
|
||||
text = seg_method(text)
|
||||
|
||||
while "\n\n" in text:
|
||||
text = text.replace("\n\n", "\n")
|
||||
|
||||
_texts = text.split("\n")
|
||||
_texts = self.filter_text(_texts)
|
||||
_texts = merge_short_text_in_array(_texts, 5)
|
||||
texts = []
|
||||
|
||||
for text in _texts:
|
||||
# 解决输入目标文本的空行导致报错的问题
|
||||
if len(text.strip()) == 0:
|
||||
continue
|
||||
if not re.sub("\W+", "", text):
|
||||
# 检测一下,如果是纯符号,就跳过。
|
||||
continue
|
||||
if text[-1] not in splits:
|
||||
text += "。" if lang != "en" else "."
|
||||
|
||||
# 解决句子过长导致Bert报错的问题
|
||||
if len(text) > 510:
|
||||
texts.extend(split_big_text(text))
|
||||
else:
|
||||
texts.append(text)
|
||||
|
||||
print(i18n("实际输入的目标文本(切句后):"))
|
||||
print(texts)
|
||||
return texts
|
||||
|
||||
def segment_and_extract_feature_for_text(
|
||||
self, text: str, language: str, version: str = "v2"
|
||||
) -> Tuple[list, torch.Tensor, str]:
|
||||
return self.get_phones_and_bert(text, language, version)
|
||||
|
||||
def get_phones_and_bert(self, text: str, language: str, version: str, final: bool = False):
|
||||
with self.bert_lock:
|
||||
text = re.sub(r' {2,}', ' ', text)
|
||||
|
||||
# Simplified language handling for Korean/English only
|
||||
if language == "auto":
|
||||
# Simple heuristic: if text contains Korean characters, use Korean, otherwise English
|
||||
if re.search(r'[가-힣]', text):
|
||||
textlist = [text]
|
||||
langlist = ["ko"]
|
||||
else:
|
||||
textlist = [text]
|
||||
langlist = ["en"]
|
||||
elif language in ["ko", "en"]:
|
||||
textlist = [text]
|
||||
langlist = [language]
|
||||
else:
|
||||
# Default to English for unsupported languages
|
||||
textlist = [text]
|
||||
langlist = ["en"]
|
||||
|
||||
phones_list = []
|
||||
bert_list = []
|
||||
norm_text_list = []
|
||||
for i in range(len(textlist)):
|
||||
lang = langlist[i]
|
||||
phones, word2ph, norm_text = self.clean_text_inf(textlist[i], lang, version)
|
||||
bert = self.get_bert_inf(phones, word2ph, norm_text, lang)
|
||||
phones_list.append(phones)
|
||||
norm_text_list.append(norm_text)
|
||||
bert_list.append(bert)
|
||||
bert = torch.cat(bert_list, dim=1)
|
||||
phones = sum(phones_list, [])
|
||||
norm_text = "".join(norm_text_list)
|
||||
|
||||
if not final and len(phones) < 6:
|
||||
return self.get_phones_and_bert("." + text, language, version, final=True)
|
||||
|
||||
return phones, bert, norm_text
|
||||
|
||||
def get_bert_feature(self, text: str, word2ph: list) -> torch.Tensor:
|
||||
with torch.no_grad():
|
||||
inputs = self.tokenizer(text, return_tensors="pt")
|
||||
for i in inputs:
|
||||
inputs[i] = inputs[i].to(self.device)
|
||||
res = self.bert_model(**inputs, output_hidden_states=True)
|
||||
res = torch.cat(res["hidden_states"][-3:-2], -1)[0].cpu()[1:-1]
|
||||
assert len(word2ph) == len(text)
|
||||
phone_level_feature = []
|
||||
for i in range(len(word2ph)):
|
||||
repeat_feature = res[i].repeat(word2ph[i], 1)
|
||||
phone_level_feature.append(repeat_feature)
|
||||
phone_level_feature = torch.cat(phone_level_feature, dim=0)
|
||||
return phone_level_feature.T
|
||||
|
||||
def clean_text_inf(self, text: str, language: str, version: str = "v2"):
|
||||
language = language.replace("all_", "")
|
||||
phones, word2ph, norm_text = clean_text(text, language, version)
|
||||
phones = cleaned_text_to_sequence(phones, version)
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
def get_bert_inf(self, phones: list, word2ph: list, norm_text: str, language: str):
|
||||
language = language.replace("all_", "")
|
||||
if language == "zh":
|
||||
feature = self.get_bert_feature(norm_text, word2ph).to(self.device)
|
||||
else:
|
||||
feature = torch.zeros(
|
||||
(1024, len(phones)),
|
||||
dtype=torch.float32,
|
||||
).to(self.device)
|
||||
|
||||
return feature
|
||||
|
||||
def filter_text(self, texts):
|
||||
_text = []
|
||||
if all(text in [None, " ", "\n", ""] for text in texts):
|
||||
raise ValueError(i18n("请输入有效文本"))
|
||||
for text in texts:
|
||||
if text in [None, " ", ""]:
|
||||
pass
|
||||
else:
|
||||
_text.append(text)
|
||||
return _text
|
||||
|
||||
def replace_consecutive_punctuation(self, text):
|
||||
punctuations = "".join(re.escape(p) for p in punctuation)
|
||||
pattern = f"([{punctuations}])([{punctuations}])+"
|
||||
result = re.sub(pattern, r"\1", text)
|
||||
return result
|
||||
1
only_tts/src/TTS_infer_pack/__init__.py
Normal file
1
only_tts/src/TTS_infer_pack/__init__.py
Normal file
@ -0,0 +1 @@
|
||||
from . import TTS, text_segmentation_method
|
||||
189
only_tts/src/TTS_infer_pack/text_segmentation_method.py
Normal file
189
only_tts/src/TTS_infer_pack/text_segmentation_method.py
Normal file
@ -0,0 +1,189 @@
|
||||
import re
|
||||
from typing import Callable
|
||||
|
||||
punctuation = set(["!", "?", "…", ",", ".", "-", " "])
|
||||
METHODS = dict()
|
||||
|
||||
|
||||
def get_method(name: str) -> Callable:
|
||||
method = METHODS.get(name, None)
|
||||
if method is None:
|
||||
raise ValueError(f"Method {name} not found")
|
||||
return method
|
||||
|
||||
|
||||
def get_method_names() -> list:
|
||||
return list(METHODS.keys())
|
||||
|
||||
|
||||
def register_method(name):
|
||||
def decorator(func):
|
||||
METHODS[name] = func
|
||||
return func
|
||||
|
||||
return decorator
|
||||
|
||||
|
||||
splits = {
|
||||
",",
|
||||
"。",
|
||||
"?",
|
||||
"!",
|
||||
",",
|
||||
".",
|
||||
"?",
|
||||
"!",
|
||||
"~",
|
||||
":",
|
||||
":",
|
||||
"—",
|
||||
"…",
|
||||
}
|
||||
|
||||
|
||||
def split_big_text(text, max_len=510):
|
||||
# 定义全角和半角标点符号
|
||||
punctuation = "".join(splits)
|
||||
|
||||
# 切割文本
|
||||
segments = re.split("([" + punctuation + "])", text)
|
||||
|
||||
# 初始化结果列表和当前片段
|
||||
result = []
|
||||
current_segment = ""
|
||||
|
||||
for segment in segments:
|
||||
# 如果当前片段加上新的片段长度超过max_len,就将当前片段加入结果列表,并重置当前片段
|
||||
if len(current_segment + segment) > max_len:
|
||||
result.append(current_segment)
|
||||
current_segment = segment
|
||||
else:
|
||||
current_segment += segment
|
||||
|
||||
# 将最后一个片段加入结果列表
|
||||
if current_segment:
|
||||
result.append(current_segment)
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def split(todo_text):
|
||||
todo_text = todo_text.replace("……", "。").replace("——", ",")
|
||||
if todo_text[-1] not in splits:
|
||||
todo_text += "。"
|
||||
i_split_head = i_split_tail = 0
|
||||
len_text = len(todo_text)
|
||||
todo_texts = []
|
||||
while 1:
|
||||
if i_split_head >= len_text:
|
||||
break # 结尾一定有标点,所以直接跳出即可,最后一段在上次已加入
|
||||
if todo_text[i_split_head] in splits:
|
||||
i_split_head += 1
|
||||
todo_texts.append(todo_text[i_split_tail:i_split_head])
|
||||
i_split_tail = i_split_head
|
||||
else:
|
||||
i_split_head += 1
|
||||
return todo_texts
|
||||
|
||||
|
||||
# 不切
|
||||
@register_method("cut0")
|
||||
def cut0(inp):
|
||||
if not set(inp).issubset(punctuation):
|
||||
return inp
|
||||
else:
|
||||
return "/n"
|
||||
|
||||
|
||||
# 凑四句一切
|
||||
@register_method("cut1")
|
||||
def cut1(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
split_idx = list(range(0, len(inps), 4))
|
||||
split_idx[-1] = None
|
||||
if len(split_idx) > 1:
|
||||
opts = []
|
||||
for idx in range(len(split_idx) - 1):
|
||||
opts.append("".join(inps[split_idx[idx] : split_idx[idx + 1]]))
|
||||
else:
|
||||
opts = [inp]
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
# 凑50字一切
|
||||
@register_method("cut2")
|
||||
def cut2(inp):
|
||||
inp = inp.strip("\n")
|
||||
inps = split(inp)
|
||||
if len(inps) < 2:
|
||||
return inp
|
||||
opts = []
|
||||
summ = 0
|
||||
tmp_str = ""
|
||||
for i in range(len(inps)):
|
||||
summ += len(inps[i])
|
||||
tmp_str += inps[i]
|
||||
if summ > 50:
|
||||
summ = 0
|
||||
opts.append(tmp_str)
|
||||
tmp_str = ""
|
||||
if tmp_str != "":
|
||||
opts.append(tmp_str)
|
||||
# print(opts)
|
||||
if len(opts) > 1 and len(opts[-1]) < 50: ##如果最后一个太短了,和前一个合一起
|
||||
opts[-2] = opts[-2] + opts[-1]
|
||||
opts = opts[:-1]
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
# 按中文句号。切
|
||||
@register_method("cut3")
|
||||
def cut3(inp):
|
||||
inp = inp.strip("\n")
|
||||
opts = ["%s" % item for item in inp.strip("。").split("。")]
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
# 按英文句号.切
|
||||
@register_method("cut4")
|
||||
def cut4(inp):
|
||||
inp = inp.strip("\n")
|
||||
opts = re.split(r"(?<!\d)\.(?!\d)", inp.strip("."))
|
||||
opts = [item for item in opts if not set(item).issubset(punctuation)]
|
||||
return "\n".join(opts)
|
||||
|
||||
|
||||
# 按标点符号切
|
||||
# contributed by https://github.com/AI-Hobbyist/GPT-SoVITS/blob/main/GPT_SoVITS/inference_webui.py
|
||||
@register_method("cut5")
|
||||
def cut5(inp):
|
||||
inp = inp.strip("\n")
|
||||
punds = {",", ".", ";", "?", "!", "、", ",", "。", "?", "!", ";", ":", "…"}
|
||||
mergeitems = []
|
||||
items = []
|
||||
|
||||
for i, char in enumerate(inp):
|
||||
if char in punds:
|
||||
if char == "." and i > 0 and i < len(inp) - 1 and inp[i - 1].isdigit() and inp[i + 1].isdigit():
|
||||
items.append(char)
|
||||
else:
|
||||
items.append(char)
|
||||
mergeitems.append("".join(items))
|
||||
items = []
|
||||
else:
|
||||
items.append(char)
|
||||
|
||||
if items:
|
||||
mergeitems.append("".join(items))
|
||||
|
||||
opt = [item for item in mergeitems if not set(item).issubset(punds)]
|
||||
return "\n".join(opt)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
method = get_method("cut5")
|
||||
print(method("你好,我是小明。你好,我是小红。你好,我是小刚。你好,我是小张。"))
|
||||
3
only_tts/src/feature_extractor/__init__.py
Normal file
3
only_tts/src/feature_extractor/__init__.py
Normal file
@ -0,0 +1,3 @@
|
||||
from . import cnhubert, whisper_enc
|
||||
|
||||
content_module_map = {"cnhubert": cnhubert, "whisper": whisper_enc}
|
||||
106
only_tts/src/feature_extractor/cnhubert.py
Normal file
106
only_tts/src/feature_extractor/cnhubert.py
Normal file
@ -0,0 +1,106 @@
|
||||
import torch
|
||||
import os
|
||||
from transformers import logging as tf_logging
|
||||
|
||||
tf_logging.set_verbosity_error()
|
||||
|
||||
import logging
|
||||
|
||||
logging.getLogger("numba").setLevel(logging.WARNING)
|
||||
|
||||
from transformers import (
|
||||
Wav2Vec2FeatureExtractor,
|
||||
HubertModel,
|
||||
)
|
||||
|
||||
import utils
|
||||
import torch.nn as nn
|
||||
|
||||
cnhubert_base_path = None
|
||||
|
||||
|
||||
class CNHubert(nn.Module):
|
||||
def __init__(self, base_path: str = None):
|
||||
super().__init__()
|
||||
if base_path is None:
|
||||
base_path = cnhubert_base_path
|
||||
if os.path.exists(base_path):
|
||||
...
|
||||
else:
|
||||
raise FileNotFoundError(base_path)
|
||||
self.model = HubertModel.from_pretrained(base_path, local_files_only=True)
|
||||
self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(base_path, local_files_only=True)
|
||||
|
||||
def forward(self, x):
|
||||
input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
feats = self.model(input_values)["last_hidden_state"]
|
||||
return feats
|
||||
|
||||
|
||||
# class CNHubertLarge(nn.Module):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
|
||||
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-hubert-large")
|
||||
# def forward(self, x):
|
||||
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
# feats = self.model(input_values)["last_hidden_state"]
|
||||
# return feats
|
||||
#
|
||||
# class CVec(nn.Module):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
# self.model = HubertModel.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
|
||||
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/vc-webui-big/hubert_base")
|
||||
# def forward(self, x):
|
||||
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
# feats = self.model(input_values)["last_hidden_state"]
|
||||
# return feats
|
||||
#
|
||||
# class cnw2v2base(nn.Module):
|
||||
# def __init__(self):
|
||||
# super().__init__()
|
||||
# self.model = Wav2Vec2Model.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
|
||||
# self.feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained("/data/docker/liujing04/gpt-vits/chinese-wav2vec2-base")
|
||||
# def forward(self, x):
|
||||
# input_values = self.feature_extractor(x, return_tensors="pt", sampling_rate=16000).input_values.to(x.device)
|
||||
# feats = self.model(input_values)["last_hidden_state"]
|
||||
# return feats
|
||||
|
||||
|
||||
def get_model():
|
||||
model = CNHubert()
|
||||
model.eval()
|
||||
return model
|
||||
|
||||
|
||||
# def get_large_model():
|
||||
# model = CNHubertLarge()
|
||||
# model.eval()
|
||||
# return model
|
||||
#
|
||||
# def get_model_cvec():
|
||||
# model = CVec()
|
||||
# model.eval()
|
||||
# return model
|
||||
#
|
||||
# def get_model_cnw2v2base():
|
||||
# model = cnw2v2base()
|
||||
# model.eval()
|
||||
# return model
|
||||
|
||||
|
||||
def get_content(hmodel, wav_16k_tensor):
|
||||
with torch.no_grad():
|
||||
feats = hmodel(wav_16k_tensor)
|
||||
return feats.transpose(1, 2)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
model = get_model()
|
||||
src_path = "/Users/Shared/原音频2.wav"
|
||||
wav_16k_tensor = utils.load_wav_to_torch_and_resample(src_path, 16000)
|
||||
model = model
|
||||
wav_16k_tensor = wav_16k_tensor
|
||||
feats = get_content(model, wav_16k_tensor)
|
||||
print(feats.shape)
|
||||
23
only_tts/src/feature_extractor/whisper_enc.py
Normal file
23
only_tts/src/feature_extractor/whisper_enc.py
Normal file
@ -0,0 +1,23 @@
|
||||
import torch
|
||||
|
||||
|
||||
def get_model():
|
||||
import whisper
|
||||
|
||||
model = whisper.load_model("small", device="cpu")
|
||||
|
||||
return model.encoder
|
||||
|
||||
|
||||
def get_content(model=None, wav_16k_tensor=None):
|
||||
from whisper import log_mel_spectrogram, pad_or_trim
|
||||
|
||||
dev = next(model.parameters()).device
|
||||
mel = log_mel_spectrogram(wav_16k_tensor).to(dev)[:, :3000]
|
||||
# if torch.cuda.is_available():
|
||||
# mel = mel.to(torch.float16)
|
||||
feature_len = mel.shape[-1] // 2
|
||||
assert mel.shape[-1] < 3000, "输入音频过长,只允许输入30以内音频"
|
||||
with torch.no_grad():
|
||||
feature = model(pad_or_trim(mel, 3000).unsqueeze(0))[:1, :feature_len, :].transpose(1, 2)
|
||||
return feature
|
||||
0
only_tts/src/module/__init__.py
Normal file
0
only_tts/src/module/__init__.py
Normal file
659
only_tts/src/module/attentions.py
Normal file
659
only_tts/src/module/attentions.py
Normal file
@ -0,0 +1,659 @@
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from module import commons
|
||||
from module.modules import LayerNorm
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size=1,
|
||||
p_dropout=0.0,
|
||||
window_size=4,
|
||||
isflow=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
n_heads,
|
||||
p_dropout=p_dropout,
|
||||
window_size=window_size,
|
||||
)
|
||||
)
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
)
|
||||
)
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
if isflow:
|
||||
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2 * hidden_channels * n_layers, 1)
|
||||
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, 1)
|
||||
self.cond_layer = weight_norm_modules(cond_layer, name="weight")
|
||||
self.gin_channels = kwargs["gin_channels"]
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
for i in range(self.n_layers):
|
||||
if g is not None:
|
||||
x = self.cond_pre(x)
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
||||
x = commons.fused_add_tanh_sigmoid_multiply(x, g_l, torch.IntTensor([self.hidden_channels]))
|
||||
y = self.attn_layers[i](x, x, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Decoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size=1,
|
||||
p_dropout=0.0,
|
||||
proximal_bias=False,
|
||||
proximal_init=True,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.self_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_0 = nn.ModuleList()
|
||||
self.encdec_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.self_attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
n_heads,
|
||||
p_dropout=p_dropout,
|
||||
proximal_bias=proximal_bias,
|
||||
proximal_init=proximal_init,
|
||||
)
|
||||
)
|
||||
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
||||
self.encdec_attn_layers.append(
|
||||
MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout)
|
||||
)
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
causal=True,
|
||||
)
|
||||
)
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, h, h_mask):
|
||||
"""
|
||||
x: decoder input
|
||||
h: encoder output
|
||||
"""
|
||||
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_0[i](x + y)
|
||||
|
||||
y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_2[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
out_channels,
|
||||
n_heads,
|
||||
p_dropout=0.0,
|
||||
window_size=None,
|
||||
heads_share=True,
|
||||
block_length=None,
|
||||
proximal_bias=False,
|
||||
proximal_init=False,
|
||||
):
|
||||
super().__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.block_length = block_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
|
||||
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
if proximal_init:
|
||||
with torch.no_grad():
|
||||
self.conv_k.weight.copy_(self.conv_q.weight)
|
||||
self.conv_k.bias.copy_(self.conv_q.bias)
|
||||
|
||||
def forward(self, x, c, attn_mask=None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
|
||||
x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask=None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, t_t = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
|
||||
|
||||
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||
if self.window_size is not None:
|
||||
assert t_s == t_t, "Relative attention is only available for self-attention."
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
|
||||
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores = scores + scores_local
|
||||
if self.proximal_bias:
|
||||
assert t_s == t_t, "Proximal bias is only available for self-attention."
|
||||
scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
if self.block_length is not None:
|
||||
assert t_s == t_t, "Local attention is only available for self-attention."
|
||||
block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
|
||||
scores = scores.masked_fill(block_mask == 0, -1e4)
|
||||
p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||||
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
||||
output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, m]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, d]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, d]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, m]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
max_relative_position = 2 * self.window_size + 1
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_length = max(length - (self.window_size + 1), 0)
|
||||
slice_start_position = max((self.window_size + 1) - length, 0)
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
if pad_length > 0:
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings,
|
||||
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
||||
)
|
||||
else:
|
||||
padded_relative_embeddings = relative_embeddings
|
||||
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, 2*l-1]
|
||||
ret: [b, h, l, l]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Concat columns of pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
||||
|
||||
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
|
||||
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, l]
|
||||
ret: [b, h, l, 2*l-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
|
||||
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
"""Bias for self-attention to encourage attention to close positions.
|
||||
Args:
|
||||
length: an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=0.0,
|
||||
activation=None,
|
||||
causal=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.activation = activation
|
||||
self.causal = causal
|
||||
|
||||
if causal:
|
||||
self.padding = self._causal_padding
|
||||
else:
|
||||
self.padding = self._same_padding
|
||||
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(self.padding(x * x_mask))
|
||||
if self.activation == "gelu":
|
||||
x = x * torch.sigmoid(1.702 * x)
|
||||
else:
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(self.padding(x * x_mask))
|
||||
return x * x_mask
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = self.kernel_size - 1
|
||||
pad_r = 0
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
def _same_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = (self.kernel_size - 1) // 2
|
||||
pad_r = self.kernel_size // 2
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
|
||||
import torch.nn as nn
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
|
||||
|
||||
class Depthwise_Separable_Conv1D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
dilation=1,
|
||||
bias=True,
|
||||
padding_mode="zeros", # TODO: refine this type
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.depth_conv = nn.Conv1d(
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels,
|
||||
kernel_size=kernel_size,
|
||||
groups=in_channels,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=bias,
|
||||
padding_mode=padding_mode,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
self.point_conv = nn.Conv1d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
return self.point_conv(self.depth_conv(input))
|
||||
|
||||
def weight_norm(self):
|
||||
self.depth_conv = weight_norm(self.depth_conv, name="weight")
|
||||
self.point_conv = weight_norm(self.point_conv, name="weight")
|
||||
|
||||
def remove_weight_norm(self):
|
||||
self.depth_conv = remove_weight_norm(self.depth_conv, name="weight")
|
||||
self.point_conv = remove_weight_norm(self.point_conv, name="weight")
|
||||
|
||||
|
||||
class Depthwise_Separable_TransposeConv1D(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
stride=1,
|
||||
padding=0,
|
||||
output_padding=0,
|
||||
bias=True,
|
||||
dilation=1,
|
||||
padding_mode="zeros", # TODO: refine this type
|
||||
device=None,
|
||||
dtype=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.depth_conv = nn.ConvTranspose1d(
|
||||
in_channels=in_channels,
|
||||
out_channels=in_channels,
|
||||
kernel_size=kernel_size,
|
||||
groups=in_channels,
|
||||
stride=stride,
|
||||
output_padding=output_padding,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=bias,
|
||||
padding_mode=padding_mode,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
self.point_conv = nn.Conv1d(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=1,
|
||||
bias=bias,
|
||||
device=device,
|
||||
dtype=dtype,
|
||||
)
|
||||
|
||||
def forward(self, input):
|
||||
return self.point_conv(self.depth_conv(input))
|
||||
|
||||
def weight_norm(self):
|
||||
self.depth_conv = weight_norm(self.depth_conv, name="weight")
|
||||
self.point_conv = weight_norm(self.point_conv, name="weight")
|
||||
|
||||
def remove_weight_norm(self):
|
||||
remove_weight_norm(self.depth_conv, name="weight")
|
||||
remove_weight_norm(self.point_conv, name="weight")
|
||||
|
||||
|
||||
def weight_norm_modules(module, name="weight", dim=0):
|
||||
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D):
|
||||
module.weight_norm()
|
||||
return module
|
||||
else:
|
||||
return weight_norm(module, name, dim)
|
||||
|
||||
|
||||
def remove_weight_norm_modules(module, name="weight"):
|
||||
if isinstance(module, Depthwise_Separable_Conv1D) or isinstance(module, Depthwise_Separable_TransposeConv1D):
|
||||
module.remove_weight_norm()
|
||||
else:
|
||||
remove_weight_norm(module, name)
|
||||
|
||||
|
||||
class FFT(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers=1,
|
||||
kernel_size=1,
|
||||
p_dropout=0.0,
|
||||
proximal_bias=False,
|
||||
proximal_init=True,
|
||||
isflow=False,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
if isflow:
|
||||
cond_layer = torch.nn.Conv1d(kwargs["gin_channels"], 2 * hidden_channels * n_layers, 1)
|
||||
self.cond_pre = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, 1)
|
||||
self.cond_layer = weight_norm_modules(cond_layer, name="weight")
|
||||
self.gin_channels = kwargs["gin_channels"]
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.self_attn_layers = nn.ModuleList()
|
||||
self.norm_layers_0 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.self_attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
n_heads,
|
||||
p_dropout=p_dropout,
|
||||
proximal_bias=proximal_bias,
|
||||
proximal_init=proximal_init,
|
||||
)
|
||||
)
|
||||
self.norm_layers_0.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
causal=True,
|
||||
)
|
||||
)
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
"""
|
||||
x: decoder input
|
||||
h: encoder output
|
||||
"""
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
x = x * x_mask
|
||||
for i in range(self.n_layers):
|
||||
if g is not None:
|
||||
x = self.cond_pre(x)
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
||||
x = commons.fused_add_tanh_sigmoid_multiply(x, g_l, torch.IntTensor([self.hidden_channels]))
|
||||
y = self.self_attn_layers[i](x, x, self_attn_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_0[i](x + y)
|
||||
|
||||
y = self.ffn_layers[i](x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = self.norm_layers_1[i](x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class TransformerCouplingLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
n_heads,
|
||||
p_dropout=0,
|
||||
filter_channels=0,
|
||||
mean_only=False,
|
||||
wn_sharing_parameter=None,
|
||||
gin_channels=0,
|
||||
):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = (
|
||||
Encoder(
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size,
|
||||
p_dropout,
|
||||
isflow=True,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
if wn_sharing_parameter is None
|
||||
else wn_sharing_parameter
|
||||
)
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1, 2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
||||
385
only_tts/src/module/attentions_onnx.py
Normal file
385
only_tts/src/module/attentions_onnx.py
Normal file
@ -0,0 +1,385 @@
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from module import commons
|
||||
|
||||
from typing import Optional
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
class Encoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
n_heads,
|
||||
n_layers,
|
||||
kernel_size=1,
|
||||
p_dropout=0.0,
|
||||
window_size=4,
|
||||
isflow=True,
|
||||
**kwargs,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_channels = hidden_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
# if isflow:
|
||||
# cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1)
|
||||
# self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1)
|
||||
# self.cond_layer = weight_norm(cond_layer, name='weight')
|
||||
# self.gin_channels = 256
|
||||
self.cond_layer_idx = self.n_layers
|
||||
self.spk_emb_linear = nn.Linear(256, self.hidden_channels)
|
||||
if "gin_channels" in kwargs:
|
||||
self.gin_channels = kwargs["gin_channels"]
|
||||
if self.gin_channels != 0:
|
||||
self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels)
|
||||
# vits2 says 3rd block, so idx is 2 by default
|
||||
self.cond_layer_idx = kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2
|
||||
logging.debug(self.gin_channels, self.cond_layer_idx)
|
||||
assert self.cond_layer_idx < self.n_layers, "cond_layer_idx should be less than n_layers"
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.attn_layers = nn.ModuleList()
|
||||
self.norm_layers_1 = nn.ModuleList()
|
||||
self.ffn_layers = nn.ModuleList()
|
||||
self.norm_layers_2 = nn.ModuleList()
|
||||
for i in range(self.n_layers):
|
||||
self.attn_layers.append(
|
||||
MultiHeadAttention(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
n_heads,
|
||||
p_dropout=p_dropout,
|
||||
window_size=window_size,
|
||||
)
|
||||
)
|
||||
self.norm_layers_1.append(LayerNorm(hidden_channels))
|
||||
self.ffn_layers.append(
|
||||
FFN(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=p_dropout,
|
||||
)
|
||||
)
|
||||
self.norm_layers_2.append(LayerNorm(hidden_channels))
|
||||
|
||||
# def forward(self, x, x_mask, g=None):
|
||||
# attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
# x = x * x_mask
|
||||
# for i in range(self.n_layers):
|
||||
# if i == self.cond_layer_idx and g is not None:
|
||||
# g = self.spk_emb_linear(g.transpose(1, 2))
|
||||
# g = g.transpose(1, 2)
|
||||
# x = x + g
|
||||
# x = x * x_mask
|
||||
# y = self.attn_layers[i](x, x, attn_mask)
|
||||
# y = self.drop(y)
|
||||
# x = self.norm_layers_1[i](x + y)
|
||||
|
||||
# y = self.ffn_layers[i](x, x_mask)
|
||||
# y = self.drop(y)
|
||||
# x = self.norm_layers_2[i](x + y)
|
||||
# x = x * x_mask
|
||||
# return x
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
|
||||
x = x * x_mask
|
||||
for attn_layers, norm_layers_1, ffn_layers, norm_layers_2 in zip(
|
||||
self.attn_layers, self.norm_layers_1, self.ffn_layers, self.norm_layers_2
|
||||
):
|
||||
y = attn_layers(x, x, attn_mask)
|
||||
y = self.drop(y)
|
||||
x = norm_layers_1(x + y)
|
||||
|
||||
y = ffn_layers(x, x_mask)
|
||||
y = self.drop(y)
|
||||
x = norm_layers_2(x + y)
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
out_channels,
|
||||
n_heads,
|
||||
p_dropout=0.0,
|
||||
window_size=None,
|
||||
heads_share=True,
|
||||
block_length=None,
|
||||
proximal_bias=False,
|
||||
proximal_init=False,
|
||||
):
|
||||
super().__init__()
|
||||
assert channels % n_heads == 0
|
||||
|
||||
self.channels = channels
|
||||
self.out_channels = out_channels
|
||||
self.n_heads = n_heads
|
||||
self.p_dropout = p_dropout
|
||||
self.window_size = window_size
|
||||
self.heads_share = heads_share
|
||||
self.block_length = block_length
|
||||
self.proximal_bias = proximal_bias
|
||||
self.proximal_init = proximal_init
|
||||
self.attn = None
|
||||
|
||||
self.k_channels = channels // n_heads
|
||||
self.conv_q = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_k = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_v = nn.Conv1d(channels, channels, 1)
|
||||
self.conv_o = nn.Conv1d(channels, out_channels, 1)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if window_size is not None:
|
||||
n_heads_rel = 1 if heads_share else n_heads
|
||||
rel_stddev = self.k_channels**-0.5
|
||||
self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
|
||||
|
||||
nn.init.xavier_uniform_(self.conv_q.weight)
|
||||
nn.init.xavier_uniform_(self.conv_k.weight)
|
||||
nn.init.xavier_uniform_(self.conv_v.weight)
|
||||
if proximal_init:
|
||||
with torch.no_grad():
|
||||
self.conv_k.weight.copy_(self.conv_q.weight)
|
||||
self.conv_k.bias.copy_(self.conv_q.bias)
|
||||
|
||||
def forward(self, x, c, attn_mask: Optional[torch.Tensor] = None):
|
||||
q = self.conv_q(x)
|
||||
k = self.conv_k(c)
|
||||
v = self.conv_v(c)
|
||||
|
||||
# x, self.attn = self.attention(q, k, v, mask=attn_mask)
|
||||
x, _ = self.attention(q, k, v, mask=attn_mask)
|
||||
|
||||
x = self.conv_o(x)
|
||||
return x
|
||||
|
||||
def attention(self, query, key, value, mask: Optional[torch.Tensor] = None):
|
||||
# reshape [b, d, t] -> [b, n_h, t, d_k]
|
||||
b, d, t_s, _ = (*key.size(), query.size(2))
|
||||
query = query.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
|
||||
key = key.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
|
||||
value = value.view(b, self.n_heads, self.k_channels, -1).transpose(2, 3)
|
||||
scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
|
||||
|
||||
if self.window_size is not None:
|
||||
key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
|
||||
rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings)
|
||||
scores_local = self._relative_position_to_absolute_position(rel_logits)
|
||||
scores = scores + scores_local
|
||||
|
||||
if mask is not None:
|
||||
scores = scores.masked_fill(mask == 0, -1e4)
|
||||
|
||||
p_attn = F.softmax(scores, dim=-1)
|
||||
p_attn = self.drop(p_attn)
|
||||
output = torch.matmul(p_attn, value)
|
||||
|
||||
if self.window_size is not None:
|
||||
relative_weights = self._absolute_position_to_relative_position(p_attn)
|
||||
value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
|
||||
output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
|
||||
|
||||
output = output.transpose(2, 3).contiguous().view(b, d, -1)
|
||||
return output, p_attn
|
||||
|
||||
def _matmul_with_relative_values(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, m]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, d]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0))
|
||||
return ret
|
||||
|
||||
def _matmul_with_relative_keys(self, x, y):
|
||||
"""
|
||||
x: [b, h, l, d]
|
||||
y: [h or 1, m, d]
|
||||
ret: [b, h, l, m]
|
||||
"""
|
||||
ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
|
||||
return ret
|
||||
|
||||
def _get_relative_embeddings(self, relative_embeddings, length):
|
||||
max_relative_position = 2 * self.window_size + 1
|
||||
# Pad first before slice to avoid using cond ops.
|
||||
pad_l = torch.zeros((1), dtype=torch.int64) + length - (self.window_size + 1)
|
||||
pad_s = torch.zeros((1), dtype=torch.int64) + (self.window_size + 1) - length
|
||||
pad_length = torch.max(pad_l, other=torch.zeros((1), dtype=torch.int64))
|
||||
slice_start_position = torch.max(pad_s, other=torch.zeros((1), dtype=torch.int64))
|
||||
|
||||
slice_end_position = slice_start_position + 2 * length - 1
|
||||
padded_relative_embeddings = F.pad(
|
||||
relative_embeddings,
|
||||
commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]),
|
||||
)
|
||||
used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position]
|
||||
return used_relative_embeddings
|
||||
|
||||
def _relative_position_to_absolute_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, 2*l-1]
|
||||
ret: [b, h, l, l]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# Concat columns of pad to shift from relative to absolute indexing.
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]]))
|
||||
|
||||
# Concat extra elements so to add up to shape (len+1, 2*len-1).
|
||||
x_flat = x.view([batch, heads, length * 2 * length])
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]]))
|
||||
|
||||
# Reshape and slice out the padded elements.
|
||||
x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :]
|
||||
return x_final
|
||||
|
||||
def _absolute_position_to_relative_position(self, x):
|
||||
"""
|
||||
x: [b, h, l, l]
|
||||
ret: [b, h, l, 2*l-1]
|
||||
"""
|
||||
batch, heads, length, _ = x.size()
|
||||
# padd along column
|
||||
x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]]))
|
||||
x_flat = x.view([batch, heads, length**2 + length * (length - 1)])
|
||||
# add 0's in the beginning that will skew the elements after reshape
|
||||
x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
|
||||
x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:]
|
||||
return x_final
|
||||
|
||||
def _attention_bias_proximal(self, length):
|
||||
"""Bias for self-attention to encourage attention to close positions.
|
||||
Args:
|
||||
length: an integer scalar.
|
||||
Returns:
|
||||
a Tensor with shape [1, 1, length, length]
|
||||
"""
|
||||
r = torch.arange(length, dtype=torch.float32)
|
||||
diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
|
||||
return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
|
||||
|
||||
|
||||
class FFN(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
p_dropout=0.0,
|
||||
activation="",
|
||||
causal=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.p_dropout = p_dropout
|
||||
self.activation = activation
|
||||
self.causal = causal
|
||||
|
||||
# 从上下文看这里一定是 False
|
||||
# if causal:
|
||||
# self.padding = self._causal_padding
|
||||
# else:
|
||||
# self.padding = self._same_padding
|
||||
|
||||
self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
|
||||
self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x = self.conv_1(self.padding(x * x_mask))
|
||||
if self.activation == "gelu":
|
||||
x = x * torch.sigmoid(1.702 * x)
|
||||
else:
|
||||
x = torch.relu(x)
|
||||
x = self.drop(x)
|
||||
x = self.conv_2(self.padding(x * x_mask))
|
||||
return x * x_mask
|
||||
|
||||
def padding(self, x):
|
||||
return self._same_padding(x)
|
||||
|
||||
def _causal_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = self.kernel_size - 1
|
||||
pad_r = 0
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
def _same_padding(self, x):
|
||||
if self.kernel_size == 1:
|
||||
return x
|
||||
pad_l = (self.kernel_size - 1) // 2
|
||||
pad_r = self.kernel_size // 2
|
||||
padding = [[0, 0], [0, 0], [pad_l, pad_r]]
|
||||
x = F.pad(x, commons.convert_pad_shape(padding))
|
||||
return x
|
||||
|
||||
|
||||
class MRTE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer=2,
|
||||
):
|
||||
super(MRTE, self).__init__()
|
||||
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
|
||||
|
||||
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge):
|
||||
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
||||
|
||||
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
||||
text_enc = self.text_pre(text * text_mask)
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
x = self.c_post(x * ssl_mask)
|
||||
return x
|
||||
185
only_tts/src/module/commons.py
Normal file
185
only_tts/src/module/commons.py
Normal file
@ -0,0 +1,185 @@
|
||||
import math
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
|
||||
def init_weights(m, mean=0.0, std=0.01):
|
||||
classname = m.__class__.__name__
|
||||
if classname.find("Conv") != -1:
|
||||
m.weight.data.normal_(mean, std)
|
||||
|
||||
|
||||
def get_padding(kernel_size, dilation=1):
|
||||
return int((kernel_size * dilation - dilation) / 2)
|
||||
|
||||
|
||||
# def convert_pad_shape(pad_shape):
|
||||
# l = pad_shape[::-1]
|
||||
# pad_shape = [item for sublist in l for item in sublist]
|
||||
# return pad_shape
|
||||
|
||||
|
||||
def intersperse(lst, item):
|
||||
result = [item] * (len(lst) * 2 + 1)
|
||||
result[1::2] = lst
|
||||
return result
|
||||
|
||||
|
||||
def kl_divergence(m_p, logs_p, m_q, logs_q):
|
||||
"""KL(P||Q)"""
|
||||
kl = (logs_q - logs_p) - 0.5
|
||||
kl += 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q)
|
||||
return kl
|
||||
|
||||
|
||||
def rand_gumbel(shape):
|
||||
"""Sample from the Gumbel distribution, protect from overflows."""
|
||||
uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
|
||||
return -torch.log(-torch.log(uniform_samples))
|
||||
|
||||
|
||||
def rand_gumbel_like(x):
|
||||
g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
|
||||
return g
|
||||
|
||||
|
||||
def slice_segments(x, ids_str, segment_size=4):
|
||||
ret = torch.zeros_like(x[:, :, :segment_size])
|
||||
for i in range(x.size(0)):
|
||||
idx_str = ids_str[i]
|
||||
idx_end = idx_str + segment_size
|
||||
ret[i] = x[i, :, idx_str:idx_end]
|
||||
return ret
|
||||
|
||||
|
||||
def rand_slice_segments(x, x_lengths=None, segment_size=4):
|
||||
b, d, t = x.size()
|
||||
if x_lengths is None:
|
||||
x_lengths = t
|
||||
ids_str_max = x_lengths - segment_size + 1
|
||||
ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
|
||||
ret = slice_segments(x, ids_str, segment_size)
|
||||
return ret, ids_str
|
||||
|
||||
|
||||
def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4):
|
||||
position = torch.arange(length, dtype=torch.float)
|
||||
num_timescales = channels // 2
|
||||
log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (num_timescales - 1)
|
||||
inv_timescales = min_timescale * torch.exp(
|
||||
torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment
|
||||
)
|
||||
scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
|
||||
signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
|
||||
signal = F.pad(signal, [0, 0, 0, channels % 2])
|
||||
signal = signal.view(1, channels, length)
|
||||
return signal
|
||||
|
||||
|
||||
def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return x + signal.to(dtype=x.dtype, device=x.device)
|
||||
|
||||
|
||||
def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
|
||||
b, channels, length = x.size()
|
||||
signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
|
||||
return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
|
||||
|
||||
|
||||
def subsequent_mask(length):
|
||||
mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
|
||||
return mask
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
in_act = input_a + input_b
|
||||
t_act = torch.tanh(in_act[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
def convert_pad_shape(pad_shape):
|
||||
l = pad_shape[::-1]
|
||||
pad_shape = [item for sublist in l for item in sublist]
|
||||
return pad_shape
|
||||
|
||||
|
||||
def shift_1d(x):
|
||||
x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
|
||||
return x
|
||||
|
||||
|
||||
def sequence_mask(length, max_length=None):
|
||||
if max_length is None:
|
||||
max_length = length.max()
|
||||
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
|
||||
return x.unsqueeze(0) < length.unsqueeze(1)
|
||||
|
||||
|
||||
def generate_path(duration, mask):
|
||||
"""
|
||||
duration: [b, 1, t_x]
|
||||
mask: [b, 1, t_y, t_x]
|
||||
"""
|
||||
device = duration.device
|
||||
|
||||
b, _, t_y, t_x = mask.shape
|
||||
cum_duration = torch.cumsum(duration, -1)
|
||||
|
||||
cum_duration_flat = cum_duration.view(b * t_x)
|
||||
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
|
||||
path = path.view(b, t_x, t_y)
|
||||
path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
|
||||
path = path.unsqueeze(1).transpose(2, 3) * mask
|
||||
return path
|
||||
|
||||
|
||||
def clip_grad_value_(parameters, clip_value, norm_type=2):
|
||||
if isinstance(parameters, torch.Tensor):
|
||||
parameters = [parameters]
|
||||
parameters = list(filter(lambda p: p.grad is not None, parameters))
|
||||
norm_type = float(norm_type)
|
||||
if clip_value is not None:
|
||||
clip_value = float(clip_value)
|
||||
|
||||
total_norm = 0
|
||||
for p in parameters:
|
||||
param_norm = p.grad.data.norm(norm_type)
|
||||
total_norm += param_norm.item() ** norm_type
|
||||
if clip_value is not None:
|
||||
p.grad.data.clamp_(min=-clip_value, max=clip_value)
|
||||
total_norm = total_norm ** (1.0 / norm_type)
|
||||
return total_norm
|
||||
|
||||
|
||||
def squeeze(x, x_mask=None, n_sqz=2):
|
||||
b, c, t = x.size()
|
||||
|
||||
t = (t // n_sqz) * n_sqz
|
||||
x = x[:, :, :t]
|
||||
x_sqz = x.view(b, c, t // n_sqz, n_sqz)
|
||||
x_sqz = x_sqz.permute(0, 3, 1, 2).contiguous().view(b, c * n_sqz, t // n_sqz)
|
||||
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask[:, :, n_sqz - 1 :: n_sqz]
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t // n_sqz).to(device=x.device, dtype=x.dtype)
|
||||
return x_sqz * x_mask, x_mask
|
||||
|
||||
|
||||
def unsqueeze(x, x_mask=None, n_sqz=2):
|
||||
b, c, t = x.size()
|
||||
|
||||
x_unsqz = x.view(b, n_sqz, c // n_sqz, t)
|
||||
x_unsqz = x_unsqz.permute(0, 2, 3, 1).contiguous().view(b, c // n_sqz, t * n_sqz)
|
||||
|
||||
if x_mask is not None:
|
||||
x_mask = x_mask.unsqueeze(-1).repeat(1, 1, 1, n_sqz).view(b, 1, t * n_sqz)
|
||||
else:
|
||||
x_mask = torch.ones(b, 1, t * n_sqz).to(device=x.device, dtype=x.dtype)
|
||||
return x_unsqz * x_mask, x_mask
|
||||
365
only_tts/src/module/core_vq.py
Normal file
365
only_tts/src/module/core_vq.py
Normal file
@ -0,0 +1,365 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
#
|
||||
# This implementation is inspired from
|
||||
# https://github.com/lucidrains/vector-quantize-pytorch
|
||||
# which is released under MIT License. Hereafter, the original license:
|
||||
# MIT License
|
||||
#
|
||||
# Copyright (c) 2020 Phil Wang
|
||||
#
|
||||
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||
# of this software and associated documentation files (the "Software"), to deal
|
||||
# in the Software without restriction, including without limitation the rights
|
||||
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||
# copies of the Software, and to permit persons to whom the Software is
|
||||
# furnished to do so, subject to the following conditions:
|
||||
#
|
||||
# The above copyright notice and this permission notice shall be included in all
|
||||
# copies or substantial portions of the Software.
|
||||
#
|
||||
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
# SOFTWARE.
|
||||
|
||||
"""Core vector quantization implementation."""
|
||||
|
||||
import typing as tp
|
||||
|
||||
from einops import rearrange, repeat
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
def default(val: tp.Any, d: tp.Any) -> tp.Any:
|
||||
return val if val is not None else d
|
||||
|
||||
|
||||
def ema_inplace(moving_avg, new, decay: float):
|
||||
moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay))
|
||||
|
||||
|
||||
def laplace_smoothing(x, n_categories: int, epsilon: float = 1e-5):
|
||||
return (x + epsilon) / (x.sum() + n_categories * epsilon)
|
||||
|
||||
|
||||
def uniform_init(*shape: int):
|
||||
t = torch.empty(shape)
|
||||
nn.init.kaiming_uniform_(t)
|
||||
return t
|
||||
|
||||
|
||||
def sample_vectors(samples, num: int):
|
||||
num_samples, device = samples.shape[0], samples.device
|
||||
|
||||
if num_samples >= num:
|
||||
indices = torch.randperm(num_samples, device=device)[:num]
|
||||
else:
|
||||
indices = torch.randint(0, num_samples, (num,), device=device)
|
||||
|
||||
return samples[indices]
|
||||
|
||||
|
||||
def kmeans(samples, num_clusters: int, num_iters: int = 10):
|
||||
dim, dtype = samples.shape[-1], samples.dtype
|
||||
max_kmeans_samples = 500
|
||||
samples = samples[:max_kmeans_samples, :]
|
||||
means = sample_vectors(samples, num_clusters)
|
||||
|
||||
print("kmeans start ... ")
|
||||
for _ in tqdm(range(num_iters)):
|
||||
diffs = rearrange(samples, "n d -> n () d") - rearrange(means, "c d -> () c d")
|
||||
dists = -(diffs**2).sum(dim=-1)
|
||||
|
||||
buckets = dists.max(dim=-1).indices
|
||||
bins = torch.bincount(buckets, minlength=num_clusters)
|
||||
zero_mask = bins == 0
|
||||
bins_min_clamped = bins.masked_fill(zero_mask, 1)
|
||||
|
||||
new_means = buckets.new_zeros(num_clusters, dim, dtype=dtype)
|
||||
new_means.scatter_add_(0, repeat(buckets, "n -> n d", d=dim), samples)
|
||||
new_means = new_means / bins_min_clamped[..., None]
|
||||
|
||||
means = torch.where(zero_mask[..., None], means, new_means)
|
||||
|
||||
return means, bins
|
||||
|
||||
|
||||
class EuclideanCodebook(nn.Module):
|
||||
"""Codebook with Euclidean distance.
|
||||
Args:
|
||||
dim (int): Dimension.
|
||||
codebook_size (int): Codebook size.
|
||||
kmeans_init (bool): Whether to use k-means to initialize the codebooks.
|
||||
If set to true, run the k-means algorithm on the first training batch and use
|
||||
the learned centroids as initialization.
|
||||
kmeans_iters (int): Number of iterations used for k-means algorithm at initialization.
|
||||
decay (float): Decay for exponential moving average over the codebooks.
|
||||
epsilon (float): Epsilon value for numerical stability.
|
||||
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
||||
that have an exponential moving average cluster size less than the specified threshold with
|
||||
randomly selected vector from the current batch.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
codebook_size: int,
|
||||
kmeans_init: int = False,
|
||||
kmeans_iters: int = 10,
|
||||
decay: float = 0.99,
|
||||
epsilon: float = 1e-5,
|
||||
threshold_ema_dead_code: int = 2,
|
||||
):
|
||||
super().__init__()
|
||||
self.decay = decay
|
||||
init_fn: tp.Union[tp.Callable[..., torch.Tensor], tp.Any] = uniform_init if not kmeans_init else torch.zeros
|
||||
embed = init_fn(codebook_size, dim)
|
||||
|
||||
self.codebook_size = codebook_size
|
||||
|
||||
self.kmeans_iters = kmeans_iters
|
||||
self.epsilon = epsilon
|
||||
self.threshold_ema_dead_code = threshold_ema_dead_code
|
||||
|
||||
self.register_buffer("inited", torch.Tensor([not kmeans_init]))
|
||||
self.register_buffer("cluster_size", torch.zeros(codebook_size))
|
||||
self.register_buffer("embed", embed)
|
||||
self.register_buffer("embed_avg", embed.clone())
|
||||
|
||||
@torch.jit.ignore
|
||||
def init_embed_(self, data):
|
||||
if self.inited:
|
||||
return
|
||||
|
||||
embed, cluster_size = kmeans(data, self.codebook_size, self.kmeans_iters)
|
||||
self.embed.data.copy_(embed)
|
||||
self.embed_avg.data.copy_(embed.clone())
|
||||
self.cluster_size.data.copy_(cluster_size)
|
||||
self.inited.data.copy_(torch.Tensor([True]))
|
||||
# Make sure all buffers across workers are in sync after initialization
|
||||
# broadcast_tensors(self.buffers())
|
||||
|
||||
def replace_(self, samples, mask):
|
||||
modified_codebook = torch.where(mask[..., None], sample_vectors(samples, self.codebook_size), self.embed)
|
||||
self.embed.data.copy_(modified_codebook)
|
||||
|
||||
def expire_codes_(self, batch_samples):
|
||||
if self.threshold_ema_dead_code == 0:
|
||||
return
|
||||
|
||||
expired_codes = self.cluster_size < self.threshold_ema_dead_code
|
||||
if not torch.any(expired_codes):
|
||||
return
|
||||
|
||||
batch_samples = rearrange(batch_samples, "... d -> (...) d")
|
||||
self.replace_(batch_samples, mask=expired_codes)
|
||||
# broadcast_tensors(self.buffers())
|
||||
|
||||
def preprocess(self, x):
|
||||
x = rearrange(x, "... d -> (...) d")
|
||||
return x
|
||||
|
||||
def quantize(self, x):
|
||||
embed = self.embed.t()
|
||||
dist = -(x.pow(2).sum(1, keepdim=True) - 2 * x @ embed + embed.pow(2).sum(0, keepdim=True))
|
||||
embed_ind = dist.max(dim=-1).indices
|
||||
return embed_ind
|
||||
|
||||
def postprocess_emb(self, embed_ind, shape):
|
||||
return embed_ind.view(*shape[:-1])
|
||||
|
||||
def dequantize(self, embed_ind):
|
||||
quantize = F.embedding(embed_ind, self.embed)
|
||||
return quantize
|
||||
|
||||
def encode(self, x):
|
||||
shape = x.shape
|
||||
# pre-process
|
||||
x = self.preprocess(x)
|
||||
# quantize
|
||||
embed_ind = self.quantize(x)
|
||||
# post-process
|
||||
embed_ind = self.postprocess_emb(embed_ind, shape)
|
||||
return embed_ind
|
||||
|
||||
def decode(self, embed_ind):
|
||||
quantize = self.dequantize(embed_ind)
|
||||
return quantize
|
||||
|
||||
def forward(self, x):
|
||||
shape, dtype = x.shape, x.dtype
|
||||
x = self.preprocess(x)
|
||||
|
||||
self.init_embed_(x)
|
||||
|
||||
embed_ind = self.quantize(x)
|
||||
embed_onehot = F.one_hot(embed_ind, self.codebook_size).type(dtype)
|
||||
embed_ind = self.postprocess_emb(embed_ind, shape)
|
||||
quantize = self.dequantize(embed_ind)
|
||||
|
||||
if self.training:
|
||||
# We do the expiry of code at that point as buffers are in sync
|
||||
# and all the workers will take the same decision.
|
||||
self.expire_codes_(x)
|
||||
ema_inplace(self.cluster_size, embed_onehot.sum(0), self.decay)
|
||||
embed_sum = x.t() @ embed_onehot
|
||||
ema_inplace(self.embed_avg, embed_sum.t(), self.decay)
|
||||
cluster_size = (
|
||||
laplace_smoothing(self.cluster_size, self.codebook_size, self.epsilon) * self.cluster_size.sum()
|
||||
)
|
||||
embed_normalized = self.embed_avg / cluster_size.unsqueeze(1)
|
||||
self.embed.data.copy_(embed_normalized)
|
||||
|
||||
return quantize, embed_ind
|
||||
|
||||
|
||||
class VectorQuantization(nn.Module):
|
||||
"""Vector quantization implementation.
|
||||
Currently supports only euclidean distance.
|
||||
Args:
|
||||
dim (int): Dimension
|
||||
codebook_size (int): Codebook size
|
||||
codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim.
|
||||
decay (float): Decay for exponential moving average over the codebooks.
|
||||
epsilon (float): Epsilon value for numerical stability.
|
||||
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
|
||||
kmeans_iters (int): Number of iterations used for kmeans initialization.
|
||||
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
||||
that have an exponential moving average cluster size less than the specified threshold with
|
||||
randomly selected vector from the current batch.
|
||||
commitment_weight (float): Weight for commitment loss.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
codebook_size: int,
|
||||
codebook_dim: tp.Optional[int] = None,
|
||||
decay: float = 0.99,
|
||||
epsilon: float = 1e-5,
|
||||
kmeans_init: bool = True,
|
||||
kmeans_iters: int = 50,
|
||||
threshold_ema_dead_code: int = 2,
|
||||
commitment_weight: float = 1.0,
|
||||
):
|
||||
super().__init__()
|
||||
_codebook_dim: int = default(codebook_dim, dim)
|
||||
|
||||
requires_projection = _codebook_dim != dim
|
||||
self.project_in = nn.Linear(dim, _codebook_dim) if requires_projection else nn.Identity()
|
||||
self.project_out = nn.Linear(_codebook_dim, dim) if requires_projection else nn.Identity()
|
||||
|
||||
self.epsilon = epsilon
|
||||
self.commitment_weight = commitment_weight
|
||||
|
||||
self._codebook = EuclideanCodebook(
|
||||
dim=_codebook_dim,
|
||||
codebook_size=codebook_size,
|
||||
kmeans_init=kmeans_init,
|
||||
kmeans_iters=kmeans_iters,
|
||||
decay=decay,
|
||||
epsilon=epsilon,
|
||||
threshold_ema_dead_code=threshold_ema_dead_code,
|
||||
)
|
||||
self.codebook_size = codebook_size
|
||||
|
||||
@property
|
||||
def codebook(self):
|
||||
return self._codebook.embed
|
||||
|
||||
def encode(self, x):
|
||||
x = rearrange(x, "b d n -> b n d")
|
||||
x = self.project_in(x)
|
||||
embed_in = self._codebook.encode(x)
|
||||
return embed_in
|
||||
|
||||
def decode(self, embed_ind):
|
||||
quantize = self._codebook.decode(embed_ind)
|
||||
quantize = self.project_out(quantize)
|
||||
quantize = rearrange(quantize, "b n d -> b d n")
|
||||
return quantize
|
||||
|
||||
def forward(self, x):
|
||||
device = x.device
|
||||
x = rearrange(x, "b d n -> b n d")
|
||||
x = self.project_in(x)
|
||||
|
||||
quantize, embed_ind = self._codebook(x)
|
||||
|
||||
if self.training:
|
||||
quantize = x + (quantize - x).detach()
|
||||
|
||||
loss = torch.tensor([0.0], device=device, requires_grad=self.training)
|
||||
|
||||
if self.training:
|
||||
if self.commitment_weight > 0:
|
||||
commit_loss = F.mse_loss(quantize.detach(), x)
|
||||
loss = loss + commit_loss * self.commitment_weight
|
||||
|
||||
quantize = self.project_out(quantize)
|
||||
quantize = rearrange(quantize, "b n d -> b d n")
|
||||
return quantize, embed_ind, loss
|
||||
|
||||
|
||||
class ResidualVectorQuantization(nn.Module):
|
||||
"""Residual vector quantization implementation.
|
||||
Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf
|
||||
"""
|
||||
|
||||
def __init__(self, *, num_quantizers, **kwargs):
|
||||
super().__init__()
|
||||
self.layers = nn.ModuleList([VectorQuantization(**kwargs) for _ in range(num_quantizers)])
|
||||
|
||||
def forward(self, x, n_q: tp.Optional[int] = None, layers: tp.Optional[list] = None):
|
||||
quantized_out = 0.0
|
||||
residual = x
|
||||
|
||||
all_losses = []
|
||||
all_indices = []
|
||||
out_quantized = []
|
||||
|
||||
n_q = n_q or len(self.layers)
|
||||
|
||||
for i, layer in enumerate(self.layers[:n_q]):
|
||||
quantized, indices, loss = layer(residual)
|
||||
residual = residual - quantized
|
||||
quantized_out = quantized_out + quantized
|
||||
|
||||
all_indices.append(indices)
|
||||
all_losses.append(loss)
|
||||
if layers and i in layers:
|
||||
out_quantized.append(quantized)
|
||||
|
||||
out_losses, out_indices = map(torch.stack, (all_losses, all_indices))
|
||||
return quantized_out, out_indices, out_losses, out_quantized
|
||||
|
||||
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None) -> torch.Tensor:
|
||||
residual = x
|
||||
all_indices = []
|
||||
n_q = n_q or len(self.layers)
|
||||
st = st or 0
|
||||
for layer in self.layers[st:n_q]:
|
||||
indices = layer.encode(residual)
|
||||
quantized = layer.decode(indices)
|
||||
residual = residual - quantized
|
||||
all_indices.append(indices)
|
||||
out_indices = torch.stack(all_indices)
|
||||
return out_indices
|
||||
|
||||
def decode(self, q_indices: torch.Tensor, st: int = 0) -> torch.Tensor:
|
||||
quantized_out = torch.tensor(0.0, device=q_indices.device)
|
||||
for i, indices in enumerate(q_indices):
|
||||
layer = self.layers[st + i]
|
||||
quantized = layer.decode(indices)
|
||||
quantized_out = quantized_out + quantized
|
||||
return quantized_out
|
||||
1071
only_tts/src/module/data_utils.py
Normal file
1071
only_tts/src/module/data_utils.py
Normal file
File diff suppressed because it is too large
Load Diff
70
only_tts/src/module/losses.py
Normal file
70
only_tts/src/module/losses.py
Normal file
@ -0,0 +1,70 @@
|
||||
import math
|
||||
|
||||
import torch
|
||||
|
||||
|
||||
def feature_loss(fmap_r, fmap_g):
|
||||
loss = 0
|
||||
for dr, dg in zip(fmap_r, fmap_g):
|
||||
for rl, gl in zip(dr, dg):
|
||||
rl = rl.float().detach()
|
||||
gl = gl.float()
|
||||
loss += torch.mean(torch.abs(rl - gl))
|
||||
|
||||
return loss * 2
|
||||
|
||||
|
||||
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
||||
loss = 0
|
||||
r_losses = []
|
||||
g_losses = []
|
||||
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
||||
dr = dr.float()
|
||||
dg = dg.float()
|
||||
r_loss = torch.mean((1 - dr) ** 2)
|
||||
g_loss = torch.mean(dg**2)
|
||||
loss += r_loss + g_loss
|
||||
r_losses.append(r_loss.item())
|
||||
g_losses.append(g_loss.item())
|
||||
|
||||
return loss, r_losses, g_losses
|
||||
|
||||
|
||||
def generator_loss(disc_outputs):
|
||||
loss = 0
|
||||
gen_losses = []
|
||||
for dg in disc_outputs:
|
||||
dg = dg.float()
|
||||
l = torch.mean((1 - dg) ** 2)
|
||||
gen_losses.append(l)
|
||||
loss += l
|
||||
|
||||
return loss, gen_losses
|
||||
|
||||
|
||||
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
||||
"""
|
||||
z_p, logs_q: [b, h, t_t]
|
||||
m_p, logs_p: [b, h, t_t]
|
||||
"""
|
||||
z_p = z_p.float()
|
||||
logs_q = logs_q.float()
|
||||
m_p = m_p.float()
|
||||
logs_p = logs_p.float()
|
||||
z_mask = z_mask.float()
|
||||
|
||||
kl = logs_p - logs_q - 0.5
|
||||
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
||||
kl = torch.sum(kl * z_mask)
|
||||
l = kl / torch.sum(z_mask)
|
||||
return l
|
||||
|
||||
|
||||
def mle_loss(z, m, logs, logdet, mask):
|
||||
l = torch.sum(logs) + 0.5 * torch.sum(
|
||||
torch.exp(-2 * logs) * ((z - m) ** 2)
|
||||
) # neg normal likelihood w/o the constant term
|
||||
l = l - torch.sum(logdet) # log jacobian determinant
|
||||
l = l / torch.sum(torch.ones_like(z) * mask) # averaging across batch, channel and time axes
|
||||
l = l + 0.5 * math.log(2 * math.pi) # add the remaining constant term
|
||||
return l
|
||||
143
only_tts/src/module/mel_processing.py
Normal file
143
only_tts/src/module/mel_processing.py
Normal file
@ -0,0 +1,143 @@
|
||||
import torch
|
||||
import torch.utils.data
|
||||
from librosa.filters import mel as librosa_mel_fn
|
||||
|
||||
MAX_WAV_VALUE = 32768.0
|
||||
|
||||
|
||||
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor
|
||||
"""
|
||||
return torch.log(torch.clamp(x, min=clip_val) * C)
|
||||
|
||||
|
||||
def dynamic_range_decompression_torch(x, C=1):
|
||||
"""
|
||||
PARAMS
|
||||
------
|
||||
C: compression factor used to compress
|
||||
"""
|
||||
return torch.exp(x) / C
|
||||
|
||||
|
||||
def spectral_normalize_torch(magnitudes):
|
||||
output = dynamic_range_compression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
def spectral_de_normalize_torch(magnitudes):
|
||||
output = dynamic_range_decompression_torch(magnitudes)
|
||||
return output
|
||||
|
||||
|
||||
mel_basis = {}
|
||||
hann_window = {}
|
||||
|
||||
|
||||
def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
|
||||
if torch.min(y) < -1.2:
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.2:
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
global hann_window
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
# wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
key = "%s-%s-%s-%s-%s" % (dtype_device, n_fft, sampling_rate, hop_size, win_size)
|
||||
# if wnsize_dtype_device not in hann_window:
|
||||
if key not in hann_window:
|
||||
# hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
hann_window[key] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
# spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[key],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-8)
|
||||
return spec
|
||||
|
||||
|
||||
def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
|
||||
global mel_basis
|
||||
dtype_device = str(spec.dtype) + "_" + str(spec.device)
|
||||
# fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
key = "%s-%s-%s-%s-%s-%s" % (dtype_device, n_fft, num_mels, sampling_rate, fmin, fmax)
|
||||
# if fmax_dtype_device not in mel_basis:
|
||||
if key not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
# mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
||||
mel_basis[key] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
|
||||
# spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = torch.matmul(mel_basis[key], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
return spec
|
||||
|
||||
|
||||
def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
|
||||
if torch.min(y) < -1.2:
|
||||
print("min value is ", torch.min(y))
|
||||
if torch.max(y) > 1.2:
|
||||
print("max value is ", torch.max(y))
|
||||
|
||||
global mel_basis, hann_window
|
||||
dtype_device = str(y.dtype) + "_" + str(y.device)
|
||||
# fmax_dtype_device = str(fmax) + '_' + dtype_device
|
||||
fmax_dtype_device = "%s-%s-%s-%s-%s-%s-%s-%s" % (
|
||||
dtype_device,
|
||||
n_fft,
|
||||
num_mels,
|
||||
sampling_rate,
|
||||
hop_size,
|
||||
win_size,
|
||||
fmin,
|
||||
fmax,
|
||||
)
|
||||
# wnsize_dtype_device = str(win_size) + '_' + dtype_device
|
||||
wnsize_dtype_device = fmax_dtype_device
|
||||
if fmax_dtype_device not in mel_basis:
|
||||
mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
|
||||
mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
|
||||
if wnsize_dtype_device not in hann_window:
|
||||
hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
||||
|
||||
y = torch.nn.functional.pad(
|
||||
y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect"
|
||||
)
|
||||
y = y.squeeze(1)
|
||||
|
||||
spec = torch.stft(
|
||||
y,
|
||||
n_fft,
|
||||
hop_length=hop_size,
|
||||
win_length=win_size,
|
||||
window=hann_window[wnsize_dtype_device],
|
||||
center=center,
|
||||
pad_mode="reflect",
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
return_complex=False,
|
||||
)
|
||||
|
||||
spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-8)
|
||||
|
||||
spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
|
||||
spec = spectral_normalize_torch(spec)
|
||||
|
||||
return spec
|
||||
1421
only_tts/src/module/models.py
Normal file
1421
only_tts/src/module/models.py
Normal file
File diff suppressed because it is too large
Load Diff
1079
only_tts/src/module/models_onnx.py
Normal file
1079
only_tts/src/module/models_onnx.py
Normal file
File diff suppressed because it is too large
Load Diff
897
only_tts/src/module/modules.py
Normal file
897
only_tts/src/module/modules.py
Normal file
@ -0,0 +1,897 @@
|
||||
import math
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn import functional as F
|
||||
|
||||
from torch.nn import Conv1d
|
||||
from torch.nn.utils import weight_norm, remove_weight_norm
|
||||
|
||||
from module import commons
|
||||
from module.commons import init_weights, get_padding
|
||||
from module.transforms import piecewise_rational_quadratic_transform
|
||||
import torch.distributions as D
|
||||
|
||||
|
||||
LRELU_SLOPE = 0.1
|
||||
|
||||
|
||||
class LayerNorm(nn.Module):
|
||||
def __init__(self, channels, eps=1e-5):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.eps = eps
|
||||
|
||||
self.gamma = nn.Parameter(torch.ones(channels))
|
||||
self.beta = nn.Parameter(torch.zeros(channels))
|
||||
|
||||
def forward(self, x):
|
||||
x = x.transpose(1, -1)
|
||||
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
||||
return x.transpose(1, -1)
|
||||
|
||||
|
||||
class ConvReluNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
hidden_channels,
|
||||
out_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
p_dropout,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.out_channels = out_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
assert n_layers > 1, "Number of layers should be larger than 0."
|
||||
|
||||
self.conv_layers = nn.ModuleList()
|
||||
self.norm_layers = nn.ModuleList()
|
||||
self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout))
|
||||
for _ in range(n_layers - 1):
|
||||
self.conv_layers.append(
|
||||
nn.Conv1d(
|
||||
hidden_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
padding=kernel_size // 2,
|
||||
)
|
||||
)
|
||||
self.norm_layers.append(LayerNorm(hidden_channels))
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask):
|
||||
x_org = x
|
||||
for i in range(self.n_layers):
|
||||
x = self.conv_layers[i](x * x_mask)
|
||||
x = self.norm_layers[i](x)
|
||||
x = self.relu_drop(x)
|
||||
x = x_org + self.proj(x)
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class DDSConv(nn.Module):
|
||||
"""
|
||||
Dialted and Depth-Separable Convolution
|
||||
"""
|
||||
|
||||
def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
self.convs_sep = nn.ModuleList()
|
||||
self.convs_1x1 = nn.ModuleList()
|
||||
self.norms_1 = nn.ModuleList()
|
||||
self.norms_2 = nn.ModuleList()
|
||||
for i in range(n_layers):
|
||||
dilation = kernel_size**i
|
||||
padding = (kernel_size * dilation - dilation) // 2
|
||||
self.convs_sep.append(
|
||||
nn.Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
groups=channels,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
)
|
||||
self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
|
||||
self.norms_1.append(LayerNorm(channels))
|
||||
self.norms_2.append(LayerNorm(channels))
|
||||
|
||||
def forward(self, x, x_mask, g=None):
|
||||
if g is not None:
|
||||
x = x + g
|
||||
for i in range(self.n_layers):
|
||||
y = self.convs_sep[i](x * x_mask)
|
||||
y = self.norms_1[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.convs_1x1[i](y)
|
||||
y = self.norms_2[i](y)
|
||||
y = F.gelu(y)
|
||||
y = self.drop(y)
|
||||
x = x + y
|
||||
return x * x_mask
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
gin_channels=0,
|
||||
p_dropout=0,
|
||||
):
|
||||
super(WN, self).__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = (kernel_size,)
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.gin_channels = gin_channels
|
||||
self.p_dropout = p_dropout
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
self.drop = nn.Dropout(p_dropout)
|
||||
|
||||
if gin_channels != 0:
|
||||
cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1)
|
||||
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight")
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate**i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = torch.nn.Conv1d(
|
||||
hidden_channels,
|
||||
2 * hidden_channels,
|
||||
kernel_size,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight")
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight")
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x, x_mask, g=None, **kwargs):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
if g is not None:
|
||||
g = self.cond_layer(g)
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
if g is not None:
|
||||
cond_offset = i * 2 * self.hidden_channels
|
||||
g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :]
|
||||
else:
|
||||
g_l = torch.zeros_like(x_in)
|
||||
|
||||
acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor)
|
||||
acts = self.drop(acts)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
||||
x = (x + res_acts) * x_mask
|
||||
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output * x_mask
|
||||
|
||||
def remove_weight_norm(self):
|
||||
if self.gin_channels != 0:
|
||||
torch.nn.utils.remove_weight_norm(self.cond_layer)
|
||||
for l in self.in_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
torch.nn.utils.remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock1(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
|
||||
super(ResBlock1, self).__init__()
|
||||
self.convs1 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[2],
|
||||
padding=get_padding(kernel_size, dilation[2]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs1.apply(init_weights)
|
||||
|
||||
self.convs2 = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=1,
|
||||
padding=get_padding(kernel_size, 1),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs2.apply(init_weights)
|
||||
|
||||
def forward(self, x, x_mask=None):
|
||||
for c1, c2 in zip(self.convs1, self.convs2):
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c1(xt)
|
||||
xt = F.leaky_relu(xt, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c2(xt)
|
||||
x = xt + x
|
||||
if x_mask is not None:
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs1:
|
||||
remove_weight_norm(l)
|
||||
for l in self.convs2:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class ResBlock2(torch.nn.Module):
|
||||
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
|
||||
super(ResBlock2, self).__init__()
|
||||
self.convs = nn.ModuleList(
|
||||
[
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[0],
|
||||
padding=get_padding(kernel_size, dilation[0]),
|
||||
)
|
||||
),
|
||||
weight_norm(
|
||||
Conv1d(
|
||||
channels,
|
||||
channels,
|
||||
kernel_size,
|
||||
1,
|
||||
dilation=dilation[1],
|
||||
padding=get_padding(kernel_size, dilation[1]),
|
||||
)
|
||||
),
|
||||
]
|
||||
)
|
||||
self.convs.apply(init_weights)
|
||||
|
||||
def forward(self, x, x_mask=None):
|
||||
for c in self.convs:
|
||||
xt = F.leaky_relu(x, LRELU_SLOPE)
|
||||
if x_mask is not None:
|
||||
xt = xt * x_mask
|
||||
xt = c(xt)
|
||||
x = xt + x
|
||||
if x_mask is not None:
|
||||
x = x * x_mask
|
||||
return x
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.convs:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
class Log(nn.Module):
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
|
||||
logdet = torch.sum(-y, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = torch.exp(x) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class Flip(nn.Module):
|
||||
def forward(self, x, *args, reverse=False, **kwargs):
|
||||
x = torch.flip(x, [1])
|
||||
if not reverse:
|
||||
logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class ElementwiseAffine(nn.Module):
|
||||
def __init__(self, channels):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.m = nn.Parameter(torch.zeros(channels, 1))
|
||||
self.logs = nn.Parameter(torch.zeros(channels, 1))
|
||||
|
||||
def forward(self, x, x_mask, reverse=False, **kwargs):
|
||||
if not reverse:
|
||||
y = self.m + torch.exp(self.logs) * x
|
||||
y = y * x_mask
|
||||
logdet = torch.sum(self.logs * x_mask, [1, 2])
|
||||
return y, logdet
|
||||
else:
|
||||
x = (x - self.m) * torch.exp(-self.logs) * x_mask
|
||||
return x
|
||||
|
||||
|
||||
class ResidualCouplingLayer(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=0,
|
||||
gin_channels=0,
|
||||
mean_only=False,
|
||||
):
|
||||
assert channels % 2 == 0, "channels should be divisible by 2"
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
self.half_channels = channels // 2
|
||||
self.mean_only = mean_only
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
|
||||
self.enc = WN(
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
p_dropout=p_dropout,
|
||||
gin_channels=gin_channels,
|
||||
)
|
||||
self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
|
||||
self.post.weight.data.zero_()
|
||||
self.post.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0) * x_mask
|
||||
h = self.enc(h, x_mask, g=g)
|
||||
stats = self.post(h) * x_mask
|
||||
if not self.mean_only:
|
||||
m, logs = torch.split(stats, [self.half_channels] * 2, 1)
|
||||
else:
|
||||
m = stats
|
||||
logs = torch.zeros_like(m)
|
||||
|
||||
if not reverse:
|
||||
x1 = m + x1 * torch.exp(logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
logdet = torch.sum(logs, [1, 2])
|
||||
return x, logdet
|
||||
else:
|
||||
x1 = (x1 - m) * torch.exp(-logs) * x_mask
|
||||
x = torch.cat([x0, x1], 1)
|
||||
return x
|
||||
|
||||
|
||||
class ConvFlow(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
filter_channels,
|
||||
kernel_size,
|
||||
n_layers,
|
||||
num_bins=10,
|
||||
tail_bound=5.0,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.filter_channels = filter_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.n_layers = n_layers
|
||||
self.num_bins = num_bins
|
||||
self.tail_bound = tail_bound
|
||||
self.half_channels = in_channels // 2
|
||||
|
||||
self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
|
||||
self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0)
|
||||
self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
|
||||
self.proj.weight.data.zero_()
|
||||
self.proj.bias.data.zero_()
|
||||
|
||||
def forward(self, x, x_mask, g=None, reverse=False):
|
||||
x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
|
||||
h = self.pre(x0)
|
||||
h = self.convs(h, x_mask, g=g)
|
||||
h = self.proj(h) * x_mask
|
||||
|
||||
b, c, t = x0.shape
|
||||
h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
|
||||
|
||||
unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels)
|
||||
unnormalized_derivatives = h[..., 2 * self.num_bins :]
|
||||
|
||||
x1, logabsdet = piecewise_rational_quadratic_transform(
|
||||
x1,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=reverse,
|
||||
tails="linear",
|
||||
tail_bound=self.tail_bound,
|
||||
)
|
||||
|
||||
x = torch.cat([x0, x1], 1) * x_mask
|
||||
logdet = torch.sum(logabsdet * x_mask, [1, 2])
|
||||
if not reverse:
|
||||
return x, logdet
|
||||
else:
|
||||
return x
|
||||
|
||||
|
||||
class LinearNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
bias=True,
|
||||
spectral_norm=False,
|
||||
):
|
||||
super(LinearNorm, self).__init__()
|
||||
self.fc = nn.Linear(in_channels, out_channels, bias)
|
||||
|
||||
if spectral_norm:
|
||||
self.fc = nn.utils.spectral_norm(self.fc)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.fc(input)
|
||||
return out
|
||||
|
||||
|
||||
class Mish(nn.Module):
|
||||
def __init__(self):
|
||||
super(Mish, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x * torch.tanh(F.softplus(x))
|
||||
|
||||
|
||||
class Conv1dGLU(nn.Module):
|
||||
"""
|
||||
Conv1d + GLU(Gated Linear Unit) with residual connection.
|
||||
For GLU refer to https://arxiv.org/abs/1612.08083 paper.
|
||||
"""
|
||||
|
||||
def __init__(self, in_channels, out_channels, kernel_size, dropout):
|
||||
super(Conv1dGLU, self).__init__()
|
||||
self.out_channels = out_channels
|
||||
self.conv1 = ConvNorm(in_channels, 2 * out_channels, kernel_size=kernel_size)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, x):
|
||||
residual = x
|
||||
x = self.conv1(x)
|
||||
x1, x2 = torch.split(x, split_size_or_sections=self.out_channels, dim=1)
|
||||
x = x1 * torch.sigmoid(x2)
|
||||
x = residual + self.dropout(x)
|
||||
return x
|
||||
|
||||
|
||||
class ConvNorm(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=1,
|
||||
stride=1,
|
||||
padding=None,
|
||||
dilation=1,
|
||||
bias=True,
|
||||
spectral_norm=False,
|
||||
):
|
||||
super(ConvNorm, self).__init__()
|
||||
|
||||
if padding is None:
|
||||
assert kernel_size % 2 == 1
|
||||
padding = int(dilation * (kernel_size - 1) / 2)
|
||||
|
||||
self.conv = torch.nn.Conv1d(
|
||||
in_channels,
|
||||
out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
dilation=dilation,
|
||||
bias=bias,
|
||||
)
|
||||
|
||||
if spectral_norm:
|
||||
self.conv = nn.utils.spectral_norm(self.conv)
|
||||
|
||||
def forward(self, input):
|
||||
out = self.conv(input)
|
||||
return out
|
||||
|
||||
|
||||
class MultiHeadAttention(nn.Module):
|
||||
"""Multi-Head Attention module"""
|
||||
|
||||
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.0, spectral_norm=False):
|
||||
super().__init__()
|
||||
|
||||
self.n_head = n_head
|
||||
self.d_k = d_k
|
||||
self.d_v = d_v
|
||||
|
||||
self.w_qs = nn.Linear(d_model, n_head * d_k)
|
||||
self.w_ks = nn.Linear(d_model, n_head * d_k)
|
||||
self.w_vs = nn.Linear(d_model, n_head * d_v)
|
||||
|
||||
self.attention = ScaledDotProductAttention(temperature=np.power(d_model, 0.5), dropout=dropout)
|
||||
|
||||
self.fc = nn.Linear(n_head * d_v, d_model)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
if spectral_norm:
|
||||
self.w_qs = nn.utils.spectral_norm(self.w_qs)
|
||||
self.w_ks = nn.utils.spectral_norm(self.w_ks)
|
||||
self.w_vs = nn.utils.spectral_norm(self.w_vs)
|
||||
self.fc = nn.utils.spectral_norm(self.fc)
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head
|
||||
sz_b, len_x, _ = x.size()
|
||||
|
||||
residual = x
|
||||
|
||||
q = self.w_qs(x).view(sz_b, len_x, n_head, d_k)
|
||||
k = self.w_ks(x).view(sz_b, len_x, n_head, d_k)
|
||||
v = self.w_vs(x).view(sz_b, len_x, n_head, d_v)
|
||||
q = q.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lq x dk
|
||||
k = k.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_k) # (n*b) x lk x dk
|
||||
v = v.permute(2, 0, 1, 3).contiguous().view(-1, len_x, d_v) # (n*b) x lv x dv
|
||||
|
||||
if mask is not None:
|
||||
slf_mask = mask.repeat(n_head, 1, 1) # (n*b) x .. x ..
|
||||
else:
|
||||
slf_mask = None
|
||||
output, attn = self.attention(q, k, v, mask=slf_mask)
|
||||
|
||||
output = output.view(n_head, sz_b, len_x, d_v)
|
||||
output = output.permute(1, 2, 0, 3).contiguous().view(sz_b, len_x, -1) # b x lq x (n*dv)
|
||||
|
||||
output = self.fc(output)
|
||||
|
||||
output = self.dropout(output) + residual
|
||||
return output, attn
|
||||
|
||||
|
||||
class ScaledDotProductAttention(nn.Module):
|
||||
"""Scaled Dot-Product Attention"""
|
||||
|
||||
def __init__(self, temperature, dropout):
|
||||
super().__init__()
|
||||
self.temperature = temperature
|
||||
self.softmax = nn.Softmax(dim=2)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
|
||||
def forward(self, q, k, v, mask=None):
|
||||
attn = torch.bmm(q, k.transpose(1, 2))
|
||||
attn = attn / self.temperature
|
||||
|
||||
if mask is not None:
|
||||
attn = attn.masked_fill(mask, -np.inf)
|
||||
|
||||
attn = self.softmax(attn)
|
||||
p_attn = self.dropout(attn)
|
||||
|
||||
output = torch.bmm(p_attn, v)
|
||||
return output, attn
|
||||
|
||||
|
||||
class MelStyleEncoder(nn.Module):
|
||||
"""MelStyleEncoder"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
n_mel_channels=80,
|
||||
style_hidden=128,
|
||||
style_vector_dim=256,
|
||||
style_kernel_size=5,
|
||||
style_head=2,
|
||||
dropout=0.1,
|
||||
):
|
||||
super(MelStyleEncoder, self).__init__()
|
||||
self.in_dim = n_mel_channels
|
||||
self.hidden_dim = style_hidden
|
||||
self.out_dim = style_vector_dim
|
||||
self.kernel_size = style_kernel_size
|
||||
self.n_head = style_head
|
||||
self.dropout = dropout
|
||||
|
||||
self.spectral = nn.Sequential(
|
||||
LinearNorm(self.in_dim, self.hidden_dim),
|
||||
Mish(),
|
||||
nn.Dropout(self.dropout),
|
||||
LinearNorm(self.hidden_dim, self.hidden_dim),
|
||||
Mish(),
|
||||
nn.Dropout(self.dropout),
|
||||
)
|
||||
|
||||
self.temporal = nn.Sequential(
|
||||
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
|
||||
Conv1dGLU(self.hidden_dim, self.hidden_dim, self.kernel_size, self.dropout),
|
||||
)
|
||||
|
||||
self.slf_attn = MultiHeadAttention(
|
||||
self.n_head,
|
||||
self.hidden_dim,
|
||||
self.hidden_dim // self.n_head,
|
||||
self.hidden_dim // self.n_head,
|
||||
self.dropout,
|
||||
)
|
||||
|
||||
self.fc = LinearNorm(self.hidden_dim, self.out_dim)
|
||||
|
||||
def temporal_avg_pool(self, x, mask=None):
|
||||
if mask is None:
|
||||
out = torch.mean(x, dim=1)
|
||||
else:
|
||||
len_ = (~mask).sum(dim=1).unsqueeze(1)
|
||||
x = x.masked_fill(mask.unsqueeze(-1), 0)
|
||||
dtype = x.dtype
|
||||
x = x.float()
|
||||
x = torch.div(x, len_.unsqueeze(1))
|
||||
out = x.sum(dim=1).to(dtype)
|
||||
return out
|
||||
|
||||
def forward(self, x, mask=None):
|
||||
x = x.transpose(1, 2)
|
||||
if mask is not None:
|
||||
mask = (mask.int() == 0).squeeze(1)
|
||||
max_len = x.shape[1]
|
||||
slf_attn_mask = mask.unsqueeze(1).expand(-1, max_len, -1) if mask is not None else None
|
||||
|
||||
# spectral
|
||||
x = self.spectral(x)
|
||||
# temporal
|
||||
x = x.transpose(1, 2)
|
||||
x = self.temporal(x)
|
||||
x = x.transpose(1, 2)
|
||||
# self-attention
|
||||
if mask is not None:
|
||||
x = x.masked_fill(mask.unsqueeze(-1), 0)
|
||||
x, _ = self.slf_attn(x, mask=slf_attn_mask)
|
||||
# fc
|
||||
x = self.fc(x)
|
||||
# temoral average pooling
|
||||
w = self.temporal_avg_pool(x, mask=mask)
|
||||
return w.unsqueeze(-1)
|
||||
|
||||
|
||||
class MelStyleEncoderVAE(nn.Module):
|
||||
def __init__(self, spec_channels, z_latent_dim, emb_dim):
|
||||
super().__init__()
|
||||
self.ref_encoder = MelStyleEncoder(spec_channels, style_vector_dim=emb_dim)
|
||||
self.fc1 = nn.Linear(emb_dim, z_latent_dim)
|
||||
self.fc2 = nn.Linear(emb_dim, z_latent_dim)
|
||||
self.fc3 = nn.Linear(z_latent_dim, emb_dim)
|
||||
self.z_latent_dim = z_latent_dim
|
||||
|
||||
def reparameterize(self, mu, logvar):
|
||||
if self.training:
|
||||
std = torch.exp(0.5 * logvar)
|
||||
eps = torch.randn_like(std)
|
||||
return eps.mul(std).add_(mu)
|
||||
else:
|
||||
return mu
|
||||
|
||||
def forward(self, inputs, mask=None):
|
||||
enc_out = self.ref_encoder(inputs.squeeze(-1), mask).squeeze(-1)
|
||||
mu = self.fc1(enc_out)
|
||||
logvar = self.fc2(enc_out)
|
||||
posterior = D.Normal(mu, torch.exp(logvar))
|
||||
kl_divergence = D.kl_divergence(posterior, D.Normal(torch.zeros_like(mu), torch.ones_like(logvar)))
|
||||
loss_kl = kl_divergence.mean()
|
||||
|
||||
z = posterior.rsample()
|
||||
style_embed = self.fc3(z)
|
||||
|
||||
return style_embed.unsqueeze(-1), loss_kl
|
||||
|
||||
def infer(self, inputs=None, random_sample=False, manual_latent=None):
|
||||
if manual_latent is None:
|
||||
if random_sample:
|
||||
dev = next(self.parameters()).device
|
||||
posterior = D.Normal(
|
||||
torch.zeros(1, self.z_latent_dim, device=dev),
|
||||
torch.ones(1, self.z_latent_dim, device=dev),
|
||||
)
|
||||
z = posterior.rsample()
|
||||
else:
|
||||
enc_out = self.ref_encoder(inputs.transpose(1, 2))
|
||||
mu = self.fc1(enc_out)
|
||||
z = mu
|
||||
else:
|
||||
z = manual_latent
|
||||
style_embed = self.fc3(z)
|
||||
return style_embed.unsqueeze(-1), z
|
||||
|
||||
|
||||
class ActNorm(nn.Module):
|
||||
def __init__(self, channels, ddi=False, **kwargs):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.initialized = not ddi
|
||||
|
||||
self.logs = nn.Parameter(torch.zeros(1, channels, 1))
|
||||
self.bias = nn.Parameter(torch.zeros(1, channels, 1))
|
||||
|
||||
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
|
||||
if x_mask is None:
|
||||
x_mask = torch.ones(x.size(0), 1, x.size(2)).to(device=x.device, dtype=x.dtype)
|
||||
x_len = torch.sum(x_mask, [1, 2])
|
||||
if not self.initialized:
|
||||
self.initialize(x, x_mask)
|
||||
self.initialized = True
|
||||
|
||||
if reverse:
|
||||
z = (x - self.bias) * torch.exp(-self.logs) * x_mask
|
||||
logdet = None
|
||||
return z
|
||||
else:
|
||||
z = (self.bias + torch.exp(self.logs) * x) * x_mask
|
||||
logdet = torch.sum(self.logs) * x_len # [b]
|
||||
return z, logdet
|
||||
|
||||
def store_inverse(self):
|
||||
pass
|
||||
|
||||
def set_ddi(self, ddi):
|
||||
self.initialized = not ddi
|
||||
|
||||
def initialize(self, x, x_mask):
|
||||
with torch.no_grad():
|
||||
denom = torch.sum(x_mask, [0, 2])
|
||||
m = torch.sum(x * x_mask, [0, 2]) / denom
|
||||
m_sq = torch.sum(x * x * x_mask, [0, 2]) / denom
|
||||
v = m_sq - (m**2)
|
||||
logs = 0.5 * torch.log(torch.clamp_min(v, 1e-6))
|
||||
|
||||
bias_init = (-m * torch.exp(-logs)).view(*self.bias.shape).to(dtype=self.bias.dtype)
|
||||
logs_init = (-logs).view(*self.logs.shape).to(dtype=self.logs.dtype)
|
||||
|
||||
self.bias.data.copy_(bias_init)
|
||||
self.logs.data.copy_(logs_init)
|
||||
|
||||
|
||||
class InvConvNear(nn.Module):
|
||||
def __init__(self, channels, n_split=4, no_jacobian=False, **kwargs):
|
||||
super().__init__()
|
||||
assert n_split % 2 == 0
|
||||
self.channels = channels
|
||||
self.n_split = n_split
|
||||
self.no_jacobian = no_jacobian
|
||||
|
||||
w_init = torch.linalg.qr(torch.FloatTensor(self.n_split, self.n_split).normal_())[0]
|
||||
if torch.det(w_init) < 0:
|
||||
w_init[:, 0] = -1 * w_init[:, 0]
|
||||
self.weight = nn.Parameter(w_init)
|
||||
|
||||
def forward(self, x, x_mask=None, g=None, reverse=False, **kwargs):
|
||||
b, c, t = x.size()
|
||||
assert c % self.n_split == 0
|
||||
if x_mask is None:
|
||||
x_mask = 1
|
||||
x_len = torch.ones((b,), dtype=x.dtype, device=x.device) * t
|
||||
else:
|
||||
x_len = torch.sum(x_mask, [1, 2])
|
||||
|
||||
x = x.view(b, 2, c // self.n_split, self.n_split // 2, t)
|
||||
x = x.permute(0, 1, 3, 2, 4).contiguous().view(b, self.n_split, c // self.n_split, t)
|
||||
|
||||
if reverse:
|
||||
if hasattr(self, "weight_inv"):
|
||||
weight = self.weight_inv
|
||||
else:
|
||||
weight = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
|
||||
logdet = None
|
||||
else:
|
||||
weight = self.weight
|
||||
if self.no_jacobian:
|
||||
logdet = 0
|
||||
else:
|
||||
logdet = torch.logdet(self.weight) * (c / self.n_split) * x_len # [b]
|
||||
|
||||
weight = weight.view(self.n_split, self.n_split, 1, 1)
|
||||
z = F.conv2d(x, weight)
|
||||
|
||||
z = z.view(b, 2, self.n_split // 2, c // self.n_split, t)
|
||||
z = z.permute(0, 1, 3, 2, 4).contiguous().view(b, c, t) * x_mask
|
||||
if reverse:
|
||||
return z
|
||||
else:
|
||||
return z, logdet
|
||||
|
||||
def store_inverse(self):
|
||||
self.weight_inv = torch.inverse(self.weight.float()).to(dtype=self.weight.dtype)
|
||||
173
only_tts/src/module/mrte_model.py
Normal file
173
only_tts/src/module/mrte_model.py
Normal file
@ -0,0 +1,173 @@
|
||||
# This is Multi-reference timbre encoder
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
from torch.nn.utils import remove_weight_norm, weight_norm
|
||||
from module.attentions import MultiHeadAttention
|
||||
|
||||
|
||||
class MRTE(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
content_enc_channels=192,
|
||||
hidden_size=512,
|
||||
out_channels=192,
|
||||
kernel_size=5,
|
||||
n_heads=4,
|
||||
ge_layer=2,
|
||||
):
|
||||
super(MRTE, self).__init__()
|
||||
self.cross_attention = MultiHeadAttention(hidden_size, hidden_size, n_heads)
|
||||
self.c_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.text_pre = nn.Conv1d(content_enc_channels, hidden_size, 1)
|
||||
self.c_post = nn.Conv1d(hidden_size, out_channels, 1)
|
||||
|
||||
def forward(self, ssl_enc, ssl_mask, text, text_mask, ge, test=None):
|
||||
if ge == None:
|
||||
ge = 0
|
||||
attn_mask = text_mask.unsqueeze(2) * ssl_mask.unsqueeze(-1)
|
||||
|
||||
ssl_enc = self.c_pre(ssl_enc * ssl_mask)
|
||||
text_enc = self.text_pre(text * text_mask)
|
||||
if test != None:
|
||||
if test == 0:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
elif test == 1:
|
||||
x = ssl_enc + ge
|
||||
elif test == 2:
|
||||
x = self.cross_attention(ssl_enc * 0 * ssl_mask, text_enc * text_mask, attn_mask) + ge
|
||||
else:
|
||||
raise ValueError("test should be 0,1,2")
|
||||
else:
|
||||
x = self.cross_attention(ssl_enc * ssl_mask, text_enc * text_mask, attn_mask) + ssl_enc + ge
|
||||
x = self.c_post(x * ssl_mask)
|
||||
return x
|
||||
|
||||
|
||||
class SpeakerEncoder(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
mel_n_channels=80,
|
||||
model_num_layers=2,
|
||||
model_hidden_size=256,
|
||||
model_embedding_size=256,
|
||||
):
|
||||
super(SpeakerEncoder, self).__init__()
|
||||
self.lstm = nn.LSTM(mel_n_channels, model_hidden_size, model_num_layers, batch_first=True)
|
||||
self.linear = nn.Linear(model_hidden_size, model_embedding_size)
|
||||
self.relu = nn.ReLU()
|
||||
|
||||
def forward(self, mels):
|
||||
self.lstm.flatten_parameters()
|
||||
_, (hidden, _) = self.lstm(mels.transpose(-1, -2))
|
||||
embeds_raw = self.relu(self.linear(hidden[-1]))
|
||||
return embeds_raw / torch.norm(embeds_raw, dim=1, keepdim=True)
|
||||
|
||||
|
||||
class MELEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
in_channels,
|
||||
out_channels,
|
||||
hidden_channels,
|
||||
kernel_size,
|
||||
dilation_rate,
|
||||
n_layers,
|
||||
):
|
||||
super().__init__()
|
||||
self.in_channels = in_channels
|
||||
self.out_channels = out_channels
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
|
||||
self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers)
|
||||
self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
|
||||
|
||||
def forward(self, x):
|
||||
# print(x.shape,x_lengths.shape)
|
||||
x = self.pre(x)
|
||||
x = self.enc(x)
|
||||
x = self.proj(x)
|
||||
return x
|
||||
|
||||
|
||||
class WN(torch.nn.Module):
|
||||
def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers):
|
||||
super(WN, self).__init__()
|
||||
assert kernel_size % 2 == 1
|
||||
self.hidden_channels = hidden_channels
|
||||
self.kernel_size = kernel_size
|
||||
self.dilation_rate = dilation_rate
|
||||
self.n_layers = n_layers
|
||||
|
||||
self.in_layers = torch.nn.ModuleList()
|
||||
self.res_skip_layers = torch.nn.ModuleList()
|
||||
|
||||
for i in range(n_layers):
|
||||
dilation = dilation_rate**i
|
||||
padding = int((kernel_size * dilation - dilation) / 2)
|
||||
in_layer = nn.Conv1d(
|
||||
hidden_channels,
|
||||
2 * hidden_channels,
|
||||
kernel_size,
|
||||
dilation=dilation,
|
||||
padding=padding,
|
||||
)
|
||||
in_layer = weight_norm(in_layer)
|
||||
self.in_layers.append(in_layer)
|
||||
|
||||
# last one is not necessary
|
||||
if i < n_layers - 1:
|
||||
res_skip_channels = 2 * hidden_channels
|
||||
else:
|
||||
res_skip_channels = hidden_channels
|
||||
|
||||
res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
|
||||
res_skip_layer = weight_norm(res_skip_layer, name="weight")
|
||||
self.res_skip_layers.append(res_skip_layer)
|
||||
|
||||
def forward(self, x):
|
||||
output = torch.zeros_like(x)
|
||||
n_channels_tensor = torch.IntTensor([self.hidden_channels])
|
||||
|
||||
for i in range(self.n_layers):
|
||||
x_in = self.in_layers[i](x)
|
||||
|
||||
acts = fused_add_tanh_sigmoid_multiply(x_in, n_channels_tensor)
|
||||
|
||||
res_skip_acts = self.res_skip_layers[i](acts)
|
||||
if i < self.n_layers - 1:
|
||||
res_acts = res_skip_acts[:, : self.hidden_channels, :]
|
||||
x = x + res_acts
|
||||
output = output + res_skip_acts[:, self.hidden_channels :, :]
|
||||
else:
|
||||
output = output + res_skip_acts
|
||||
return output
|
||||
|
||||
def remove_weight_norm(self):
|
||||
for l in self.in_layers:
|
||||
remove_weight_norm(l)
|
||||
for l in self.res_skip_layers:
|
||||
remove_weight_norm(l)
|
||||
|
||||
|
||||
@torch.jit.script
|
||||
def fused_add_tanh_sigmoid_multiply(input, n_channels):
|
||||
n_channels_int = n_channels[0]
|
||||
t_act = torch.tanh(input[:, :n_channels_int, :])
|
||||
s_act = torch.sigmoid(input[:, n_channels_int:, :])
|
||||
acts = t_act * s_act
|
||||
return acts
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
content_enc = torch.randn(3, 192, 100)
|
||||
content_mask = torch.ones(3, 1, 100)
|
||||
ref_mel = torch.randn(3, 128, 30)
|
||||
ref_mask = torch.ones(3, 1, 30)
|
||||
model = MRTE()
|
||||
out = model(content_enc, content_mask, ref_mel, ref_mask)
|
||||
print(out.shape)
|
||||
114
only_tts/src/module/quantize.py
Normal file
114
only_tts/src/module/quantize.py
Normal file
@ -0,0 +1,114 @@
|
||||
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
||||
# All rights reserved.
|
||||
#
|
||||
# This source code is licensed under the license found in the
|
||||
# LICENSE file in the root directory of this source tree.
|
||||
|
||||
"""Residual vector quantizer implementation."""
|
||||
|
||||
from dataclasses import dataclass, field
|
||||
import typing as tp
|
||||
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from module.core_vq import ResidualVectorQuantization
|
||||
|
||||
|
||||
@dataclass
|
||||
class QuantizedResult:
|
||||
quantized: torch.Tensor
|
||||
codes: torch.Tensor
|
||||
bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item.
|
||||
penalty: tp.Optional[torch.Tensor] = None
|
||||
metrics: dict = field(default_factory=dict)
|
||||
|
||||
|
||||
class ResidualVectorQuantizer(nn.Module):
|
||||
"""Residual Vector Quantizer.
|
||||
Args:
|
||||
dimension (int): Dimension of the codebooks.
|
||||
n_q (int): Number of residual vector quantizers used.
|
||||
bins (int): Codebook size.
|
||||
decay (float): Decay for exponential moving average over the codebooks.
|
||||
kmeans_init (bool): Whether to use kmeans to initialize the codebooks.
|
||||
kmeans_iters (int): Number of iterations used for kmeans initialization.
|
||||
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes
|
||||
that have an exponential moving average cluster size less than the specified threshold with
|
||||
randomly selected vector from the current batch.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dimension: int = 256,
|
||||
n_q: int = 8,
|
||||
bins: int = 1024,
|
||||
decay: float = 0.99,
|
||||
kmeans_init: bool = True,
|
||||
kmeans_iters: int = 50,
|
||||
threshold_ema_dead_code: int = 2,
|
||||
):
|
||||
super().__init__()
|
||||
self.n_q = n_q
|
||||
self.dimension = dimension
|
||||
self.bins = bins
|
||||
self.decay = decay
|
||||
self.kmeans_init = kmeans_init
|
||||
self.kmeans_iters = kmeans_iters
|
||||
self.threshold_ema_dead_code = threshold_ema_dead_code
|
||||
self.vq = ResidualVectorQuantization(
|
||||
dim=self.dimension,
|
||||
codebook_size=self.bins,
|
||||
num_quantizers=self.n_q,
|
||||
decay=self.decay,
|
||||
kmeans_init=self.kmeans_init,
|
||||
kmeans_iters=self.kmeans_iters,
|
||||
threshold_ema_dead_code=self.threshold_ema_dead_code,
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x: torch.Tensor,
|
||||
n_q: tp.Optional[int] = None,
|
||||
layers: tp.Optional[list] = None,
|
||||
) -> QuantizedResult:
|
||||
"""Residual vector quantization on the given input tensor.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
n_q (int): Number of quantizer used to quantize. Default: All quantizers.
|
||||
layers (list): Layer that need to return quantized. Defalt: None.
|
||||
Returns:
|
||||
QuantizedResult:
|
||||
The quantized (or approximately quantized) representation with
|
||||
the associated numbert quantizers and layer quantized required to return.
|
||||
"""
|
||||
n_q = n_q if n_q else self.n_q
|
||||
if layers and max(layers) >= n_q:
|
||||
raise ValueError(
|
||||
f"Last layer index in layers: A {max(layers)}. Number of quantizers in RVQ: B {self.n_q}. A must less than B."
|
||||
)
|
||||
quantized, codes, commit_loss, quantized_list = self.vq(x, n_q=n_q, layers=layers)
|
||||
return quantized, codes, torch.mean(commit_loss), quantized_list
|
||||
|
||||
def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None, st: tp.Optional[int] = None) -> torch.Tensor:
|
||||
"""Encode a given input tensor with the specified sample rate at the given bandwidth.
|
||||
The RVQ encode method sets the appropriate number of quantizer to use
|
||||
and returns indices for each quantizer.
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor.
|
||||
n_q (int): Number of quantizer used to quantize. Default: All quantizers.
|
||||
st (int): Start to encode input from which layers. Default: 0.
|
||||
"""
|
||||
n_q = n_q if n_q else self.n_q
|
||||
st = st or 0
|
||||
codes = self.vq.encode(x, n_q=n_q, st=st)
|
||||
return codes
|
||||
|
||||
def decode(self, codes: torch.Tensor, st: int = 0) -> torch.Tensor:
|
||||
"""Decode the given codes to the quantized representation.
|
||||
Args:
|
||||
codes (torch.Tensor): Input indices for each quantizer.
|
||||
st (int): Start to decode input codes from which layers. Default: 0.
|
||||
"""
|
||||
quantized = self.vq.decode(codes, st=st)
|
||||
return quantized
|
||||
205
only_tts/src/module/transforms.py
Normal file
205
only_tts/src/module/transforms.py
Normal file
@ -0,0 +1,205 @@
|
||||
import torch
|
||||
from torch.nn import functional as F
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
DEFAULT_MIN_BIN_WIDTH = 1e-3
|
||||
DEFAULT_MIN_BIN_HEIGHT = 1e-3
|
||||
DEFAULT_MIN_DERIVATIVE = 1e-3
|
||||
|
||||
|
||||
def piecewise_rational_quadratic_transform(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails=None,
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if tails is None:
|
||||
spline_fn = rational_quadratic_spline
|
||||
spline_kwargs = {}
|
||||
else:
|
||||
spline_fn = unconstrained_rational_quadratic_spline
|
||||
spline_kwargs = {"tails": tails, "tail_bound": tail_bound}
|
||||
|
||||
outputs, logabsdet = spline_fn(
|
||||
inputs=inputs,
|
||||
unnormalized_widths=unnormalized_widths,
|
||||
unnormalized_heights=unnormalized_heights,
|
||||
unnormalized_derivatives=unnormalized_derivatives,
|
||||
inverse=inverse,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
**spline_kwargs,
|
||||
)
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def searchsorted(bin_locations, inputs, eps=1e-6):
|
||||
bin_locations[..., -1] += eps
|
||||
return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1
|
||||
|
||||
|
||||
def unconstrained_rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
tails="linear",
|
||||
tail_bound=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
|
||||
outside_interval_mask = ~inside_interval_mask
|
||||
|
||||
outputs = torch.zeros_like(inputs)
|
||||
logabsdet = torch.zeros_like(inputs)
|
||||
|
||||
if tails == "linear":
|
||||
unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
|
||||
constant = np.log(np.exp(1 - min_derivative) - 1)
|
||||
unnormalized_derivatives[..., 0] = constant
|
||||
unnormalized_derivatives[..., -1] = constant
|
||||
|
||||
outputs[outside_interval_mask] = inputs[outside_interval_mask]
|
||||
logabsdet[outside_interval_mask] = 0
|
||||
else:
|
||||
raise RuntimeError("{} tails are not implemented.".format(tails))
|
||||
|
||||
(
|
||||
outputs[inside_interval_mask],
|
||||
logabsdet[inside_interval_mask],
|
||||
) = rational_quadratic_spline(
|
||||
inputs=inputs[inside_interval_mask],
|
||||
unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
|
||||
unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
|
||||
unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
|
||||
inverse=inverse,
|
||||
left=-tail_bound,
|
||||
right=tail_bound,
|
||||
bottom=-tail_bound,
|
||||
top=tail_bound,
|
||||
min_bin_width=min_bin_width,
|
||||
min_bin_height=min_bin_height,
|
||||
min_derivative=min_derivative,
|
||||
)
|
||||
|
||||
return outputs, logabsdet
|
||||
|
||||
|
||||
def rational_quadratic_spline(
|
||||
inputs,
|
||||
unnormalized_widths,
|
||||
unnormalized_heights,
|
||||
unnormalized_derivatives,
|
||||
inverse=False,
|
||||
left=0.0,
|
||||
right=1.0,
|
||||
bottom=0.0,
|
||||
top=1.0,
|
||||
min_bin_width=DEFAULT_MIN_BIN_WIDTH,
|
||||
min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
|
||||
min_derivative=DEFAULT_MIN_DERIVATIVE,
|
||||
):
|
||||
if torch.min(inputs) < left or torch.max(inputs) > right:
|
||||
raise ValueError("Input to a transform is not within its domain")
|
||||
|
||||
num_bins = unnormalized_widths.shape[-1]
|
||||
|
||||
if min_bin_width * num_bins > 1.0:
|
||||
raise ValueError("Minimal bin width too large for the number of bins")
|
||||
if min_bin_height * num_bins > 1.0:
|
||||
raise ValueError("Minimal bin height too large for the number of bins")
|
||||
|
||||
widths = F.softmax(unnormalized_widths, dim=-1)
|
||||
widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
|
||||
cumwidths = torch.cumsum(widths, dim=-1)
|
||||
cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumwidths = (right - left) * cumwidths + left
|
||||
cumwidths[..., 0] = left
|
||||
cumwidths[..., -1] = right
|
||||
widths = cumwidths[..., 1:] - cumwidths[..., :-1]
|
||||
|
||||
derivatives = min_derivative + F.softplus(unnormalized_derivatives)
|
||||
|
||||
heights = F.softmax(unnormalized_heights, dim=-1)
|
||||
heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
|
||||
cumheights = torch.cumsum(heights, dim=-1)
|
||||
cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0)
|
||||
cumheights = (top - bottom) * cumheights + bottom
|
||||
cumheights[..., 0] = bottom
|
||||
cumheights[..., -1] = top
|
||||
heights = cumheights[..., 1:] - cumheights[..., :-1]
|
||||
|
||||
if inverse:
|
||||
bin_idx = searchsorted(cumheights, inputs)[..., None]
|
||||
else:
|
||||
bin_idx = searchsorted(cumwidths, inputs)[..., None]
|
||||
|
||||
input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
|
||||
input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
|
||||
delta = heights / widths
|
||||
input_delta = delta.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
|
||||
input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
|
||||
|
||||
input_heights = heights.gather(-1, bin_idx)[..., 0]
|
||||
|
||||
if inverse:
|
||||
a = (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
) + input_heights * (input_delta - input_derivatives)
|
||||
b = input_heights * input_derivatives - (inputs - input_cumheights) * (
|
||||
input_derivatives + input_derivatives_plus_one - 2 * input_delta
|
||||
)
|
||||
c = -input_delta * (inputs - input_cumheights)
|
||||
|
||||
discriminant = b.pow(2) - 4 * a * c
|
||||
assert (discriminant >= 0).all()
|
||||
|
||||
root = (2 * c) / (-b - torch.sqrt(discriminant))
|
||||
outputs = root * input_bin_widths + input_cumwidths
|
||||
|
||||
theta_one_minus_theta = root * (1 - root)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta
|
||||
)
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * root.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - root).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, -logabsdet
|
||||
else:
|
||||
theta = (inputs - input_cumwidths) / input_bin_widths
|
||||
theta_one_minus_theta = theta * (1 - theta)
|
||||
|
||||
numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta)
|
||||
denominator = input_delta + (
|
||||
(input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta
|
||||
)
|
||||
outputs = input_cumheights + numerator / denominator
|
||||
|
||||
derivative_numerator = input_delta.pow(2) * (
|
||||
input_derivatives_plus_one * theta.pow(2)
|
||||
+ 2 * input_delta * theta_one_minus_theta
|
||||
+ input_derivatives * (1 - theta).pow(2)
|
||||
)
|
||||
logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
|
||||
|
||||
return outputs, logabsdet
|
||||
124
only_tts/src/process_ckpt.py
Normal file
124
only_tts/src/process_ckpt.py
Normal file
@ -0,0 +1,124 @@
|
||||
import traceback
|
||||
from collections import OrderedDict
|
||||
from time import time as ttime
|
||||
import shutil
|
||||
import os
|
||||
import torch
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
|
||||
i18n = I18nAuto()
|
||||
|
||||
|
||||
def my_save(fea, path): #####fix issue: torch.save doesn't support chinese path
|
||||
dir = os.path.dirname(path)
|
||||
name = os.path.basename(path)
|
||||
tmp_path = "%s.pth" % (ttime())
|
||||
torch.save(fea, tmp_path)
|
||||
shutil.move(tmp_path, "%s/%s" % (dir, name))
|
||||
|
||||
|
||||
from io import BytesIO
|
||||
|
||||
model_version2byte = {
|
||||
"v4": b"04",
|
||||
"v2Pro": b"05",
|
||||
"v2ProPlus": b"06",
|
||||
}
|
||||
|
||||
|
||||
def my_save2(fea, path, model_version):
|
||||
bio = BytesIO()
|
||||
torch.save(fea, bio)
|
||||
bio.seek(0)
|
||||
data = bio.getvalue()
|
||||
byte = model_version2byte[model_version]
|
||||
data = byte + data[2:]
|
||||
with open(path, "wb") as f:
|
||||
f.write(data)
|
||||
|
||||
|
||||
def savee(ckpt, name, epoch, steps, hps, model_version=None, lora_rank=None):
|
||||
try:
|
||||
opt = OrderedDict()
|
||||
opt["weight"] = {}
|
||||
for key in ckpt.keys():
|
||||
if "enc_q" in key:
|
||||
continue
|
||||
opt["weight"][key] = ckpt[key].half()
|
||||
opt["config"] = hps
|
||||
opt["info"] = "%sepoch_%siteration" % (epoch, steps)
|
||||
if lora_rank:
|
||||
opt["lora_rank"] = lora_rank
|
||||
my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name), model_version)
|
||||
elif model_version != None and "Pro" in model_version:
|
||||
my_save2(opt, "%s/%s.pth" % (hps.save_weight_dir, name), model_version)
|
||||
else:
|
||||
my_save(opt, "%s/%s.pth" % (hps.save_weight_dir, name))
|
||||
return "Success."
|
||||
except:
|
||||
return traceback.format_exc()
|
||||
|
||||
|
||||
"""
|
||||
Only V4 and V2Pro series are supported:
|
||||
04:v4lora
|
||||
05:v2Pro
|
||||
06:v2ProPlus
|
||||
"""
|
||||
head2version = {
|
||||
b"04": ["v2", "v4", True],
|
||||
b"05": ["v2", "v2Pro", False],
|
||||
b"06": ["v2", "v2ProPlus", False],
|
||||
}
|
||||
hash_pretrained_dict = {
|
||||
"4f26b9476d0c5033e04162c486074374": ["v2", "v4", False], # s2Gv4.pth#sovits_v4_pretrained
|
||||
"c7e9fce2223f3db685cdfa1e6368728a": ["v2", "v2Pro", False], # s2Gv2Pro.pth#sovits_v2Pro_pretrained
|
||||
"66b313e39455b57ab1b0bc0b239c9d0a": ["v2", "v2ProPlus", False], # s2Gv2ProPlus.pth#sovits_v2ProPlus_pretrained
|
||||
}
|
||||
import hashlib
|
||||
|
||||
|
||||
def get_hash_from_file(sovits_path):
|
||||
with open(sovits_path, "rb") as f:
|
||||
data = f.read(8192)
|
||||
hash_md5 = hashlib.md5()
|
||||
hash_md5.update(data)
|
||||
return hash_md5.hexdigest()
|
||||
|
||||
|
||||
def get_sovits_version_from_path_fast(sovits_path):
|
||||
###1-if it is pretrained sovits models, by hash
|
||||
hash = get_hash_from_file(sovits_path)
|
||||
if hash in hash_pretrained_dict:
|
||||
return hash_pretrained_dict[hash]
|
||||
###2-new weights, by head
|
||||
with open(sovits_path, "rb") as f:
|
||||
version = f.read(2)
|
||||
if version != b"PK":
|
||||
return head2version[version]
|
||||
###3-legacy weights, not supported
|
||||
if_lora_v3 = False
|
||||
size = os.path.getsize(sovits_path)
|
||||
"""
|
||||
Legacy file size detection - no longer supported:
|
||||
v1weights:about 82942KB
|
||||
v2weights:about 83014KB
|
||||
v3weights:about 750MB
|
||||
Only V4 and V2Pro series are supported.
|
||||
"""
|
||||
if size < 700 * 1024 * 1024:
|
||||
raise ValueError(f"Legacy model detected (file size: {size/1024/1024:.1f}MB). Only V4 and V2Pro series are supported.")
|
||||
else:
|
||||
raise ValueError(f"Unsupported model format. Please use V4 or V2Pro series models.")
|
||||
|
||||
|
||||
def load_sovits_new(sovits_path):
|
||||
f = open(sovits_path, "rb")
|
||||
meta = f.read(2)
|
||||
if meta != b"PK":
|
||||
data = b"PK" + f.read()
|
||||
bio = BytesIO()
|
||||
bio.write(data)
|
||||
bio.seek(0)
|
||||
return torch.load(bio, map_location="cpu", weights_only=False)
|
||||
return torch.load(sovits_path, map_location="cpu", weights_only=False)
|
||||
32
only_tts/src/sv.py
Normal file
32
only_tts/src/sv.py
Normal file
@ -0,0 +1,32 @@
|
||||
import sys
|
||||
import os
|
||||
import torch
|
||||
|
||||
sys.path.append(f"{os.getcwd()}/GPT_SoVITS/eres2net")
|
||||
sv_path = "GPT_SoVITS/pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt"
|
||||
from ERes2NetV2 import ERes2NetV2
|
||||
import kaldi as Kaldi
|
||||
|
||||
|
||||
class SV:
|
||||
def __init__(self, device, is_half):
|
||||
pretrained_state = torch.load(sv_path, map_location="cpu", weights_only=False)
|
||||
embedding_model = ERes2NetV2(baseWidth=24, scale=4, expansion=4)
|
||||
embedding_model.load_state_dict(pretrained_state)
|
||||
embedding_model.eval()
|
||||
self.embedding_model = embedding_model
|
||||
if is_half == False:
|
||||
self.embedding_model = self.embedding_model.to(device)
|
||||
else:
|
||||
self.embedding_model = self.embedding_model.half().to(device)
|
||||
self.is_half = is_half
|
||||
|
||||
def compute_embedding3(self, wav):
|
||||
with torch.no_grad():
|
||||
if self.is_half == True:
|
||||
wav = wav.half()
|
||||
feat = torch.stack(
|
||||
[Kaldi.fbank(wav0.unsqueeze(0), num_mel_bins=80, sample_frequency=16000, dither=0) for wav0 in wav]
|
||||
)
|
||||
sv_emb = self.embedding_model.forward3(feat)
|
||||
return sv_emb
|
||||
3
only_tts/src/text/.gitignore
vendored
Normal file
3
only_tts/src/text/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
G2PWModel
|
||||
__pycache__
|
||||
*.zip
|
||||
17
only_tts/src/text/__init__.py
Normal file
17
only_tts/src/text/__init__.py
Normal file
@ -0,0 +1,17 @@
|
||||
import os
|
||||
# Only V2+ symbols are supported (V4 and V2Pro use V2+ language set)
|
||||
from text import symbols2 as symbols_v2
|
||||
|
||||
_symbol_to_id_v2 = {s: i for i, s in enumerate(symbols_v2.symbols)}
|
||||
|
||||
|
||||
def cleaned_text_to_sequence(cleaned_text, version=None):
|
||||
"""Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
|
||||
Args:
|
||||
text: string to convert to a sequence
|
||||
Returns:
|
||||
List of integers corresponding to the symbols in the text
|
||||
"""
|
||||
# Only V2+ versions are supported
|
||||
phones = [_symbol_to_id_v2[symbol] for symbol in cleaned_text]
|
||||
return phones
|
||||
43
only_tts/src/text/cleaner.py
Normal file
43
only_tts/src/text/cleaner.py
Normal file
@ -0,0 +1,43 @@
|
||||
from text import cleaned_text_to_sequence
|
||||
import os
|
||||
|
||||
# Only V2+ symbols are supported (V4 and V2Pro use V2+ language set)
|
||||
from text import symbols2 as symbols_v2
|
||||
|
||||
|
||||
def clean_text(text, language, version=None):
|
||||
# Only V2+ versions are supported
|
||||
symbols = symbols_v2.symbols
|
||||
# Only Korean and English languages supported
|
||||
language_module_map = {"en": "english", "ko": "korean"}
|
||||
|
||||
if language not in language_module_map:
|
||||
language = "en"
|
||||
text = " "
|
||||
language_module = __import__("text." + language_module_map[language], fromlist=[language_module_map[language]])
|
||||
if hasattr(language_module, "text_normalize"):
|
||||
norm_text = language_module.text_normalize(text)
|
||||
else:
|
||||
norm_text = text
|
||||
if language == "en":
|
||||
phones = language_module.g2p(norm_text)
|
||||
if len(phones) < 4:
|
||||
phones = [","] + phones
|
||||
word2ph = None
|
||||
else: # korean
|
||||
phones = language_module.g2p(norm_text)
|
||||
word2ph = None
|
||||
phones = ["UNK" if ph not in symbols else ph for ph in phones]
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def text_to_sequence(text, language, version=None):
|
||||
version = os.environ.get("version", version)
|
||||
if version is None:
|
||||
version = "v2"
|
||||
phones = clean_text(text, language)
|
||||
return cleaned_text_to_sequence(phones, version)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(clean_text("Hello world", "en"))
|
||||
43
only_tts/src/text/cleaner_new.py
Normal file
43
only_tts/src/text/cleaner_new.py
Normal file
@ -0,0 +1,43 @@
|
||||
from text import cleaned_text_to_sequence
|
||||
import os
|
||||
|
||||
# Only V2+ symbols are supported (V4 and V2Pro use V2+ language set)
|
||||
from text import symbols2 as symbols_v2
|
||||
|
||||
|
||||
def clean_text(text, language, version=None):
|
||||
# Only V2+ versions are supported
|
||||
symbols = symbols_v2.symbols
|
||||
# Only Korean and English languages supported
|
||||
language_module_map = {"en": "english", "ko": "korean"}
|
||||
|
||||
if language not in language_module_map:
|
||||
language = "en"
|
||||
text = " "
|
||||
language_module = __import__("text." + language_module_map[language], fromlist=[language_module_map[language]])
|
||||
if hasattr(language_module, "text_normalize"):
|
||||
norm_text = language_module.text_normalize(text)
|
||||
else:
|
||||
norm_text = text
|
||||
if language == "en":
|
||||
phones = language_module.g2p(norm_text)
|
||||
if len(phones) < 4:
|
||||
phones = [","] + phones
|
||||
word2ph = None
|
||||
else: # korean
|
||||
phones = language_module.g2p(norm_text)
|
||||
word2ph = None
|
||||
phones = ["UNK" if ph not in symbols else ph for ph in phones]
|
||||
return phones, word2ph, norm_text
|
||||
|
||||
|
||||
def text_to_sequence(text, language, version=None):
|
||||
version = os.environ.get("version", version)
|
||||
if version is None:
|
||||
version = "v2"
|
||||
phones = clean_text(text, language)
|
||||
return cleaned_text_to_sequence(phones, version)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(clean_text("Hello world", "en"))
|
||||
135010
only_tts/src/text/cmudict-fast.rep
Normal file
135010
only_tts/src/text/cmudict-fast.rep
Normal file
File diff suppressed because it is too large
Load Diff
134429
only_tts/src/text/cmudict.rep
Normal file
134429
only_tts/src/text/cmudict.rep
Normal file
File diff suppressed because it is too large
Load Diff
283
only_tts/src/text/en_normalization/expend.py
Normal file
283
only_tts/src/text/en_normalization/expend.py
Normal file
@ -0,0 +1,283 @@
|
||||
# by https://github.com/Cosmo-klara
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import re
|
||||
import inflect
|
||||
import unicodedata
|
||||
|
||||
# 后缀计量单位替换表
|
||||
measurement_map = {
|
||||
"m": ["meter", "meters"],
|
||||
"km": ["kilometer", "kilometers"],
|
||||
"km/h": ["kilometer per hour", "kilometers per hour"],
|
||||
"ft": ["feet", "feet"],
|
||||
"L": ["liter", "liters"],
|
||||
"tbsp": ["tablespoon", "tablespoons"],
|
||||
"tsp": ["teaspoon", "teaspoons"],
|
||||
"h": ["hour", "hours"],
|
||||
"min": ["minute", "minutes"],
|
||||
"s": ["second", "seconds"],
|
||||
"°C": ["degree celsius", "degrees celsius"],
|
||||
"°F": ["degree fahrenheit", "degrees fahrenheit"],
|
||||
}
|
||||
|
||||
|
||||
# 识别 12,000 类型
|
||||
_inflect = inflect.engine()
|
||||
|
||||
# 转化数字序数词
|
||||
_ordinal_number_re = re.compile(r"\b([0-9]+)\. ")
|
||||
|
||||
# 我听说好像对于数字正则识别其实用 \d 会好一点
|
||||
|
||||
_comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
|
||||
|
||||
# 时间识别
|
||||
_time_re = re.compile(r"\b([01]?[0-9]|2[0-3]):([0-5][0-9])\b")
|
||||
|
||||
# 后缀计量单位识别
|
||||
_measurement_re = re.compile(r"\b([0-9]+(\.[0-9]+)?(m|km|km/h|ft|L|tbsp|tsp|h|min|s|°C|°F))\b")
|
||||
|
||||
# 前后 £ 识别 ( 写了识别两边某一边的,但是不知道为什么失败了┭┮﹏┭┮ )
|
||||
_pounds_re_start = re.compile(r"£([0-9\.\,]*[0-9]+)")
|
||||
_pounds_re_end = re.compile(r"([0-9\.\,]*[0-9]+)£")
|
||||
|
||||
# 前后 $ 识别
|
||||
_dollars_re_start = re.compile(r"\$([0-9\.\,]*[0-9]+)")
|
||||
_dollars_re_end = re.compile(r"([(0-9\.\,]*[0-9]+)\$")
|
||||
|
||||
# 小数的识别
|
||||
_decimal_number_re = re.compile(r"([0-9]+\.\s*[0-9]+)")
|
||||
|
||||
# 分数识别 (形式 "3/4" )
|
||||
_fraction_re = re.compile(r"([0-9]+/[0-9]+)")
|
||||
|
||||
# 序数词识别
|
||||
_ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
|
||||
|
||||
# 数字处理
|
||||
_number_re = re.compile(r"[0-9]+")
|
||||
|
||||
|
||||
def _convert_ordinal(m):
|
||||
"""
|
||||
标准化序数词, 例如: 1. 2. 3. 4. 5. 6.
|
||||
Examples:
|
||||
input: "1. "
|
||||
output: "1st"
|
||||
然后在后面的 _expand_ordinal, 将其转化为 first 这类的
|
||||
"""
|
||||
ordinal = _inflect.ordinal(m.group(1))
|
||||
return ordinal + ", "
|
||||
|
||||
|
||||
def _remove_commas(m):
|
||||
return m.group(1).replace(",", "")
|
||||
|
||||
|
||||
def _expand_time(m):
|
||||
"""
|
||||
将 24 小时制的时间转换为 12 小时制的时间表示方式。
|
||||
|
||||
Examples:
|
||||
input: "13:00 / 4:00 / 13:30"
|
||||
output: "one o'clock p.m. / four o'clock am. / one thirty p.m."
|
||||
"""
|
||||
hours, minutes = map(int, m.group(1, 2))
|
||||
period = "a.m." if hours < 12 else "p.m."
|
||||
if hours > 12:
|
||||
hours -= 12
|
||||
|
||||
hour_word = _inflect.number_to_words(hours)
|
||||
minute_word = _inflect.number_to_words(minutes) if minutes != 0 else ""
|
||||
|
||||
if minutes == 0:
|
||||
return f"{hour_word} o'clock {period}"
|
||||
else:
|
||||
return f"{hour_word} {minute_word} {period}"
|
||||
|
||||
|
||||
def _expand_measurement(m):
|
||||
"""
|
||||
处理一些常见的测量单位后缀, 目前支持: m, km, km/h, ft, L, tbsp, tsp, h, min, s, °C, °F
|
||||
如果要拓展的话修改: _measurement_re 和 measurement_map
|
||||
"""
|
||||
sign = m.group(3)
|
||||
ptr = 1
|
||||
# 想不到怎么方便的取数字,又懒得改正则,诶,1.2 反正也是复数读法,干脆直接去掉 "."
|
||||
num = int(m.group(1).replace(sign, "").replace(".", ""))
|
||||
decimal_part = m.group(2)
|
||||
# 上面判断的漏洞,比如 0.1 的情况,在这里排除了
|
||||
if decimal_part == None and num == 1:
|
||||
ptr = 0
|
||||
return m.group(1).replace(sign, " " + measurement_map[sign][ptr])
|
||||
|
||||
|
||||
def _expand_pounds(m):
|
||||
"""
|
||||
没找到特别规范的说明,和美元的处理一样,其实可以把两个合并在一起
|
||||
"""
|
||||
match = m.group(1)
|
||||
parts = match.split(".")
|
||||
if len(parts) > 2:
|
||||
return match + " pounds" # Unexpected format
|
||||
pounds = int(parts[0]) if parts[0] else 0
|
||||
pence = int(parts[1].ljust(2, "0")) if len(parts) > 1 and parts[1] else 0
|
||||
if pounds and pence:
|
||||
pound_unit = "pound" if pounds == 1 else "pounds"
|
||||
penny_unit = "penny" if pence == 1 else "pence"
|
||||
return "%s %s and %s %s" % (pounds, pound_unit, pence, penny_unit)
|
||||
elif pounds:
|
||||
pound_unit = "pound" if pounds == 1 else "pounds"
|
||||
return "%s %s" % (pounds, pound_unit)
|
||||
elif pence:
|
||||
penny_unit = "penny" if pence == 1 else "pence"
|
||||
return "%s %s" % (pence, penny_unit)
|
||||
else:
|
||||
return "zero pounds"
|
||||
|
||||
|
||||
def _expand_dollars(m):
|
||||
"""
|
||||
change: 美分是 100 的限值, 应该要做补零的吧
|
||||
Example:
|
||||
input: "32.3$ / $6.24"
|
||||
output: "thirty-two dollars and thirty cents" / "six dollars and twenty-four cents"
|
||||
"""
|
||||
match = m.group(1)
|
||||
parts = match.split(".")
|
||||
if len(parts) > 2:
|
||||
return match + " dollars" # Unexpected format
|
||||
dollars = int(parts[0]) if parts[0] else 0
|
||||
cents = int(parts[1].ljust(2, "0")) if len(parts) > 1 and parts[1] else 0
|
||||
if dollars and cents:
|
||||
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
||||
cent_unit = "cent" if cents == 1 else "cents"
|
||||
return "%s %s and %s %s" % (dollars, dollar_unit, cents, cent_unit)
|
||||
elif dollars:
|
||||
dollar_unit = "dollar" if dollars == 1 else "dollars"
|
||||
return "%s %s" % (dollars, dollar_unit)
|
||||
elif cents:
|
||||
cent_unit = "cent" if cents == 1 else "cents"
|
||||
return "%s %s" % (cents, cent_unit)
|
||||
else:
|
||||
return "zero dollars"
|
||||
|
||||
|
||||
# 小数的处理
|
||||
def _expand_decimal_number(m):
|
||||
"""
|
||||
Example:
|
||||
input: "13.234"
|
||||
output: "thirteen point two three four"
|
||||
"""
|
||||
match = m.group(1)
|
||||
parts = match.split(".")
|
||||
words = []
|
||||
# 遍历字符串中的每个字符
|
||||
for char in parts[1]:
|
||||
if char == ".":
|
||||
words.append("point")
|
||||
else:
|
||||
words.append(char)
|
||||
return parts[0] + " point " + " ".join(words)
|
||||
|
||||
|
||||
# 分数的处理
|
||||
def _expend_fraction(m):
|
||||
"""
|
||||
规则1: 分子使用基数词读法, 分母用序数词读法.
|
||||
规则2: 如果分子大于 1, 在读分母的时候使用序数词复数读法.
|
||||
规则3: 当分母为2的时候, 分母读做 half, 并且当分子大于 1 的时候, half 也要用复数读法, 读为 halves.
|
||||
Examples:
|
||||
|
||||
| Written | Said |
|
||||
|:---:|:---:|
|
||||
| 1/3 | one third |
|
||||
| 3/4 | three fourths |
|
||||
| 5/6 | five sixths |
|
||||
| 1/2 | one half |
|
||||
| 3/2 | three halves |
|
||||
"""
|
||||
match = m.group(0)
|
||||
numerator, denominator = map(int, match.split("/"))
|
||||
|
||||
numerator_part = _inflect.number_to_words(numerator)
|
||||
if denominator == 2:
|
||||
if numerator == 1:
|
||||
denominator_part = "half"
|
||||
else:
|
||||
denominator_part = "halves"
|
||||
elif denominator == 1:
|
||||
return f"{numerator_part}"
|
||||
else:
|
||||
denominator_part = _inflect.ordinal(_inflect.number_to_words(denominator))
|
||||
if numerator > 1:
|
||||
denominator_part += "s"
|
||||
|
||||
return f"{numerator_part} {denominator_part}"
|
||||
|
||||
|
||||
def _expand_ordinal(m):
|
||||
return _inflect.number_to_words(m.group(0))
|
||||
|
||||
|
||||
def _expand_number(m):
|
||||
num = int(m.group(0))
|
||||
if num > 1000 and num < 3000:
|
||||
if num == 2000:
|
||||
return "two thousand"
|
||||
elif num > 2000 and num < 2010:
|
||||
return "two thousand " + _inflect.number_to_words(num % 100)
|
||||
elif num % 100 == 0:
|
||||
return _inflect.number_to_words(num // 100) + " hundred"
|
||||
else:
|
||||
return _inflect.number_to_words(num, andword="", zero="oh", group=2).replace(", ", " ")
|
||||
else:
|
||||
return _inflect.number_to_words(num, andword="")
|
||||
|
||||
|
||||
def normalize(text):
|
||||
"""
|
||||
!!! 所有的处理都需要正确的输入 !!!
|
||||
可以添加新的处理,只需要添加正则表达式和对应的处理函数即可
|
||||
"""
|
||||
|
||||
text = re.sub(_ordinal_number_re, _convert_ordinal, text)
|
||||
text = re.sub(r"(?<!\d)-|-(?!\d)", " minus ", text)
|
||||
text = re.sub(_comma_number_re, _remove_commas, text)
|
||||
text = re.sub(_time_re, _expand_time, text)
|
||||
text = re.sub(_measurement_re, _expand_measurement, text)
|
||||
text = re.sub(_pounds_re_start, _expand_pounds, text)
|
||||
text = re.sub(_pounds_re_end, _expand_pounds, text)
|
||||
text = re.sub(_dollars_re_start, _expand_dollars, text)
|
||||
text = re.sub(_dollars_re_end, _expand_dollars, text)
|
||||
text = re.sub(_decimal_number_re, _expand_decimal_number, text)
|
||||
text = re.sub(_fraction_re, _expend_fraction, text)
|
||||
text = re.sub(_ordinal_re, _expand_ordinal, text)
|
||||
text = re.sub(_number_re, _expand_number, text)
|
||||
|
||||
text = "".join(
|
||||
char for char in unicodedata.normalize("NFD", text) if unicodedata.category(char) != "Mn"
|
||||
) # Strip accents
|
||||
|
||||
text = re.sub("%", " percent", text)
|
||||
text = re.sub("[^ A-Za-z'.,?!\-]", "", text)
|
||||
text = re.sub(r"(?i)i\.e\.", "that is", text)
|
||||
text = re.sub(r"(?i)e\.g\.", "for example", text)
|
||||
# 增加纯大写单词拆分
|
||||
text = re.sub(r"(?<!^)(?<![\s])([A-Z])", r" \1", text)
|
||||
return text
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# 我觉得其实可以把切分结果展示出来(只读,或者修改不影响传给TTS的实际text)
|
||||
# 然后让用户确认后再输入给 TTS,可以让用户检查自己有没有不标准的输入
|
||||
print(normalize("1. test ordinal number 1st"))
|
||||
print(normalize("32.3$, $6.24, 1.1£, £7.14."))
|
||||
print(normalize("3/23, 1/2, 3/2, 1/3, 6/1"))
|
||||
print(normalize("1st, 22nd"))
|
||||
print(normalize("a test 20h, 1.2s, 1L, 0.1km"))
|
||||
print(normalize("a test of time 4:00, 13:00, 13:30"))
|
||||
print(normalize("a test of temperature 4°F, 23°C, -19°C"))
|
||||
3
only_tts/src/text/engdict-hot.rep
Normal file
3
only_tts/src/text/engdict-hot.rep
Normal file
@ -0,0 +1,3 @@
|
||||
CHATGPT CH AE1 T JH IY1 P IY1 T IY1
|
||||
JSON JH EY1 S AH0 N
|
||||
CONDA K AA1 N D AH0
|
||||
374
only_tts/src/text/english.py
Normal file
374
only_tts/src/text/english.py
Normal file
@ -0,0 +1,374 @@
|
||||
import pickle
|
||||
import os
|
||||
import re
|
||||
import wordsegment
|
||||
from g2p_en import G2p
|
||||
|
||||
from text.symbols import punctuation
|
||||
|
||||
from text.symbols2 import symbols
|
||||
|
||||
from builtins import str as unicode
|
||||
from text.en_normalization.expend import normalize
|
||||
from nltk.tokenize import TweetTokenizer
|
||||
|
||||
word_tokenize = TweetTokenizer().tokenize
|
||||
from nltk import pos_tag
|
||||
|
||||
current_file_path = os.path.dirname(__file__)
|
||||
CMU_DICT_PATH = os.path.join(current_file_path, "cmudict.rep")
|
||||
CMU_DICT_FAST_PATH = os.path.join(current_file_path, "cmudict-fast.rep")
|
||||
CMU_DICT_HOT_PATH = os.path.join(current_file_path, "engdict-hot.rep")
|
||||
CACHE_PATH = os.path.join(current_file_path, "engdict_cache.pickle")
|
||||
NAMECACHE_PATH = os.path.join(current_file_path, "namedict_cache.pickle")
|
||||
|
||||
|
||||
# 适配中文及 g2p_en 标点
|
||||
rep_map = {
|
||||
"[;::,;]": ",",
|
||||
'["’]': "'",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
}
|
||||
|
||||
|
||||
arpa = {
|
||||
"AH0",
|
||||
"S",
|
||||
"AH1",
|
||||
"EY2",
|
||||
"AE2",
|
||||
"EH0",
|
||||
"OW2",
|
||||
"UH0",
|
||||
"NG",
|
||||
"B",
|
||||
"G",
|
||||
"AY0",
|
||||
"M",
|
||||
"AA0",
|
||||
"F",
|
||||
"AO0",
|
||||
"ER2",
|
||||
"UH1",
|
||||
"IY1",
|
||||
"AH2",
|
||||
"DH",
|
||||
"IY0",
|
||||
"EY1",
|
||||
"IH0",
|
||||
"K",
|
||||
"N",
|
||||
"W",
|
||||
"IY2",
|
||||
"T",
|
||||
"AA1",
|
||||
"ER1",
|
||||
"EH2",
|
||||
"OY0",
|
||||
"UH2",
|
||||
"UW1",
|
||||
"Z",
|
||||
"AW2",
|
||||
"AW1",
|
||||
"V",
|
||||
"UW2",
|
||||
"AA2",
|
||||
"ER",
|
||||
"AW0",
|
||||
"UW0",
|
||||
"R",
|
||||
"OW1",
|
||||
"EH1",
|
||||
"ZH",
|
||||
"AE0",
|
||||
"IH2",
|
||||
"IH",
|
||||
"Y",
|
||||
"JH",
|
||||
"P",
|
||||
"AY1",
|
||||
"EY0",
|
||||
"OY2",
|
||||
"TH",
|
||||
"HH",
|
||||
"D",
|
||||
"ER0",
|
||||
"CH",
|
||||
"AO1",
|
||||
"AE1",
|
||||
"AO2",
|
||||
"OY1",
|
||||
"AY2",
|
||||
"IH1",
|
||||
"OW0",
|
||||
"L",
|
||||
"SH",
|
||||
}
|
||||
|
||||
|
||||
def replace_phs(phs):
|
||||
rep_map = {"'": "-"}
|
||||
phs_new = []
|
||||
for ph in phs:
|
||||
if ph in symbols:
|
||||
phs_new.append(ph)
|
||||
elif ph in rep_map.keys():
|
||||
phs_new.append(rep_map[ph])
|
||||
else:
|
||||
print("ph not in symbols: ", ph)
|
||||
return phs_new
|
||||
|
||||
|
||||
def replace_consecutive_punctuation(text):
|
||||
punctuations = "".join(re.escape(p) for p in punctuation)
|
||||
pattern = f"([{punctuations}\s])([{punctuations}])+"
|
||||
result = re.sub(pattern, r"\1", text)
|
||||
return result
|
||||
|
||||
|
||||
def read_dict():
|
||||
g2p_dict = {}
|
||||
start_line = 49
|
||||
with open(CMU_DICT_PATH) as f:
|
||||
line = f.readline()
|
||||
line_index = 1
|
||||
while line:
|
||||
if line_index >= start_line:
|
||||
line = line.strip()
|
||||
word_split = line.split(" ")
|
||||
word = word_split[0].lower()
|
||||
|
||||
syllable_split = word_split[1].split(" - ")
|
||||
g2p_dict[word] = []
|
||||
for syllable in syllable_split:
|
||||
phone_split = syllable.split(" ")
|
||||
g2p_dict[word].append(phone_split)
|
||||
|
||||
line_index = line_index + 1
|
||||
line = f.readline()
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
def read_dict_new():
|
||||
g2p_dict = {}
|
||||
with open(CMU_DICT_PATH) as f:
|
||||
line = f.readline()
|
||||
line_index = 1
|
||||
while line:
|
||||
if line_index >= 57:
|
||||
line = line.strip()
|
||||
word_split = line.split(" ")
|
||||
word = word_split[0].lower()
|
||||
g2p_dict[word] = [word_split[1].split(" ")]
|
||||
|
||||
line_index = line_index + 1
|
||||
line = f.readline()
|
||||
|
||||
with open(CMU_DICT_FAST_PATH) as f:
|
||||
line = f.readline()
|
||||
line_index = 1
|
||||
while line:
|
||||
if line_index >= 0:
|
||||
line = line.strip()
|
||||
word_split = line.split(" ")
|
||||
word = word_split[0].lower()
|
||||
if word not in g2p_dict:
|
||||
g2p_dict[word] = [word_split[1:]]
|
||||
|
||||
line_index = line_index + 1
|
||||
line = f.readline()
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
def hot_reload_hot(g2p_dict):
|
||||
with open(CMU_DICT_HOT_PATH) as f:
|
||||
line = f.readline()
|
||||
line_index = 1
|
||||
while line:
|
||||
if line_index >= 0:
|
||||
line = line.strip()
|
||||
word_split = line.split(" ")
|
||||
word = word_split[0].lower()
|
||||
# 自定义发音词直接覆盖字典
|
||||
g2p_dict[word] = [word_split[1:]]
|
||||
|
||||
line_index = line_index + 1
|
||||
line = f.readline()
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
def cache_dict(g2p_dict, file_path):
|
||||
with open(file_path, "wb") as pickle_file:
|
||||
pickle.dump(g2p_dict, pickle_file)
|
||||
|
||||
|
||||
def get_dict():
|
||||
if os.path.exists(CACHE_PATH):
|
||||
with open(CACHE_PATH, "rb") as pickle_file:
|
||||
g2p_dict = pickle.load(pickle_file)
|
||||
else:
|
||||
g2p_dict = read_dict_new()
|
||||
cache_dict(g2p_dict, CACHE_PATH)
|
||||
|
||||
g2p_dict = hot_reload_hot(g2p_dict)
|
||||
|
||||
return g2p_dict
|
||||
|
||||
|
||||
def get_namedict():
|
||||
if os.path.exists(NAMECACHE_PATH):
|
||||
with open(NAMECACHE_PATH, "rb") as pickle_file:
|
||||
name_dict = pickle.load(pickle_file)
|
||||
else:
|
||||
name_dict = {}
|
||||
|
||||
return name_dict
|
||||
|
||||
|
||||
def text_normalize(text):
|
||||
# todo: eng text normalize
|
||||
|
||||
# 效果相同,和 chinese.py 保持一致
|
||||
pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
|
||||
text = pattern.sub(lambda x: rep_map[x.group()], text)
|
||||
|
||||
text = unicode(text)
|
||||
text = normalize(text)
|
||||
|
||||
# 避免重复标点引起的参考泄露
|
||||
text = replace_consecutive_punctuation(text)
|
||||
return text
|
||||
|
||||
|
||||
class en_G2p(G2p):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
# 分词初始化
|
||||
wordsegment.load()
|
||||
|
||||
# 扩展过时字典, 添加姓名字典
|
||||
self.cmu = get_dict()
|
||||
self.namedict = get_namedict()
|
||||
|
||||
# 剔除读音错误的几个缩写
|
||||
for word in ["AE", "AI", "AR", "IOS", "HUD", "OS"]:
|
||||
del self.cmu[word.lower()]
|
||||
|
||||
# 修正多音字
|
||||
self.homograph2features["read"] = (["R", "IY1", "D"], ["R", "EH1", "D"], "VBP")
|
||||
self.homograph2features["complex"] = (
|
||||
["K", "AH0", "M", "P", "L", "EH1", "K", "S"],
|
||||
["K", "AA1", "M", "P", "L", "EH0", "K", "S"],
|
||||
"JJ",
|
||||
)
|
||||
|
||||
def __call__(self, text):
|
||||
# tokenization
|
||||
words = word_tokenize(text)
|
||||
tokens = pos_tag(words) # tuples of (word, tag)
|
||||
|
||||
# steps
|
||||
prons = []
|
||||
for o_word, pos in tokens:
|
||||
# 还原 g2p_en 小写操作逻辑
|
||||
word = o_word.lower()
|
||||
|
||||
if re.search("[a-z]", word) is None:
|
||||
pron = [word]
|
||||
# 先把单字母推出去
|
||||
elif len(word) == 1:
|
||||
# 单读 A 发音修正, 这里需要原格式 o_word 判断大写
|
||||
if o_word == "A":
|
||||
pron = ["EY1"]
|
||||
else:
|
||||
pron = self.cmu[word][0]
|
||||
# g2p_en 原版多音字处理
|
||||
elif word in self.homograph2features: # Check homograph
|
||||
pron1, pron2, pos1 = self.homograph2features[word]
|
||||
if pos.startswith(pos1):
|
||||
pron = pron1
|
||||
# pos1比pos长仅出现在read
|
||||
elif len(pos) < len(pos1) and pos == pos1[: len(pos)]:
|
||||
pron = pron1
|
||||
else:
|
||||
pron = pron2
|
||||
else:
|
||||
# 递归查找预测
|
||||
pron = self.qryword(o_word)
|
||||
|
||||
prons.extend(pron)
|
||||
prons.extend([" "])
|
||||
|
||||
return prons[:-1]
|
||||
|
||||
def qryword(self, o_word):
|
||||
word = o_word.lower()
|
||||
|
||||
# 查字典, 单字母除外
|
||||
if len(word) > 1 and word in self.cmu: # lookup CMU dict
|
||||
return self.cmu[word][0]
|
||||
|
||||
# 单词仅首字母大写时查找姓名字典
|
||||
if o_word.istitle() and word in self.namedict:
|
||||
return self.namedict[word][0]
|
||||
|
||||
# oov 长度小于等于 3 直接读字母
|
||||
if len(word) <= 3:
|
||||
phones = []
|
||||
for w in word:
|
||||
# 单读 A 发音修正, 此处不存在大写的情况
|
||||
if w == "a":
|
||||
phones.extend(["EY1"])
|
||||
elif not w.isalpha():
|
||||
phones.extend([w])
|
||||
else:
|
||||
phones.extend(self.cmu[w][0])
|
||||
return phones
|
||||
|
||||
# 尝试分离所有格
|
||||
if re.match(r"^([a-z]+)('s)$", word):
|
||||
phones = self.qryword(word[:-2])[:]
|
||||
# P T K F TH HH 无声辅音结尾 's 发 ['S']
|
||||
if phones[-1] in ["P", "T", "K", "F", "TH", "HH"]:
|
||||
phones.extend(["S"])
|
||||
# S Z SH ZH CH JH 擦声结尾 's 发 ['IH1', 'Z'] 或 ['AH0', 'Z']
|
||||
elif phones[-1] in ["S", "Z", "SH", "ZH", "CH", "JH"]:
|
||||
phones.extend(["AH0", "Z"])
|
||||
# B D G DH V M N NG L R W Y 有声辅音结尾 's 发 ['Z']
|
||||
# AH0 AH1 AH2 EY0 EY1 EY2 AE0 AE1 AE2 EH0 EH1 EH2 OW0 OW1 OW2 UH0 UH1 UH2 IY0 IY1 IY2 AA0 AA1 AA2 AO0 AO1 AO2
|
||||
# ER ER0 ER1 ER2 UW0 UW1 UW2 AY0 AY1 AY2 AW0 AW1 AW2 OY0 OY1 OY2 IH IH0 IH1 IH2 元音结尾 's 发 ['Z']
|
||||
else:
|
||||
phones.extend(["Z"])
|
||||
return phones
|
||||
|
||||
# 尝试进行分词,应对复合词
|
||||
comps = wordsegment.segment(word.lower())
|
||||
|
||||
# 无法分词的送回去预测
|
||||
if len(comps) == 1:
|
||||
return self.predict(word)
|
||||
|
||||
# 可以分词的递归处理
|
||||
return [phone for comp in comps for phone in self.qryword(comp)]
|
||||
|
||||
|
||||
_g2p = en_G2p()
|
||||
|
||||
|
||||
def g2p(text):
|
||||
# g2p_en 整段推理,剔除不存在的arpa返回
|
||||
phone_list = _g2p(text)
|
||||
phones = [ph if ph != "<unk>" else "UNK" for ph in phone_list if ph not in [" ", "<pad>", "UW", "</s>", "<s>"]]
|
||||
|
||||
return replace_phs(phones)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(g2p("hello"))
|
||||
print(g2p(text_normalize("e.g. I used openai's AI tool to draw a picture.")))
|
||||
print(g2p(text_normalize("In this; paper, we propose 1 DSPGAN, a GAN-based universal vocoder.")))
|
||||
337
only_tts/src/text/korean.py
Normal file
337
only_tts/src/text/korean.py
Normal file
@ -0,0 +1,337 @@
|
||||
# reference: https://github.com/ORI-Muchim/MB-iSTFT-VITS-Korean/blob/main/text/korean.py
|
||||
|
||||
import re
|
||||
from jamo import h2j, j2hcj
|
||||
import ko_pron
|
||||
from g2pk2 import G2p
|
||||
|
||||
import importlib
|
||||
import os
|
||||
|
||||
# 防止win下无法读取模型
|
||||
if os.name == "nt":
|
||||
|
||||
class win_G2p(G2p):
|
||||
def check_mecab(self):
|
||||
super().check_mecab()
|
||||
spam_spec = importlib.util.find_spec("eunjeon")
|
||||
non_found = spam_spec is None
|
||||
if non_found:
|
||||
print("you have to install eunjeon. install it...")
|
||||
else:
|
||||
installpath = spam_spec.submodule_search_locations[0]
|
||||
if not (re.match(r"^[A-Za-z0-9_/\\:.\-]*$", installpath)):
|
||||
import sys
|
||||
from eunjeon import Mecab as _Mecab
|
||||
|
||||
class Mecab(_Mecab):
|
||||
def get_dicpath(installpath):
|
||||
if not (re.match(r"^[A-Za-z0-9_/\\:.\-]*$", installpath)):
|
||||
import shutil
|
||||
|
||||
python_dir = os.getcwd()
|
||||
if installpath[: len(python_dir)].upper() == python_dir.upper():
|
||||
dicpath = os.path.join(os.path.relpath(installpath, python_dir), "data", "mecabrc")
|
||||
else:
|
||||
if not os.path.exists("TEMP"):
|
||||
os.mkdir("TEMP")
|
||||
if not os.path.exists(os.path.join("TEMP", "ko")):
|
||||
os.mkdir(os.path.join("TEMP", "ko"))
|
||||
if os.path.exists(os.path.join("TEMP", "ko", "ko_dict")):
|
||||
shutil.rmtree(os.path.join("TEMP", "ko", "ko_dict"))
|
||||
|
||||
shutil.copytree(
|
||||
os.path.join(installpath, "data"), os.path.join("TEMP", "ko", "ko_dict")
|
||||
)
|
||||
dicpath = os.path.join("TEMP", "ko", "ko_dict", "mecabrc")
|
||||
else:
|
||||
dicpath = os.path.abspath(os.path.join(installpath, "data/mecabrc"))
|
||||
return dicpath
|
||||
|
||||
def __init__(self, dicpath=get_dicpath(installpath)):
|
||||
super().__init__(dicpath=dicpath)
|
||||
|
||||
sys.modules["eunjeon"].Mecab = Mecab
|
||||
|
||||
G2p = win_G2p
|
||||
|
||||
|
||||
from text.symbols2 import symbols
|
||||
|
||||
# This is a list of Korean classifiers preceded by pure Korean numerals.
|
||||
_korean_classifiers = (
|
||||
"군데 권 개 그루 닢 대 두 마리 모 모금 뭇 발 발짝 방 번 벌 보루 살 수 술 시 쌈 움큼 정 짝 채 척 첩 축 켤레 톨 통"
|
||||
)
|
||||
|
||||
# List of (hangul, hangul divided) pairs:
|
||||
_hangul_divided = [
|
||||
(re.compile("%s" % x[0]), x[1])
|
||||
for x in [
|
||||
# ('ㄳ', 'ㄱㅅ'), # g2pk2, A Syllable-ending Rule
|
||||
# ('ㄵ', 'ㄴㅈ'),
|
||||
# ('ㄶ', 'ㄴㅎ'),
|
||||
# ('ㄺ', 'ㄹㄱ'),
|
||||
# ('ㄻ', 'ㄹㅁ'),
|
||||
# ('ㄼ', 'ㄹㅂ'),
|
||||
# ('ㄽ', 'ㄹㅅ'),
|
||||
# ('ㄾ', 'ㄹㅌ'),
|
||||
# ('ㄿ', 'ㄹㅍ'),
|
||||
# ('ㅀ', 'ㄹㅎ'),
|
||||
# ('ㅄ', 'ㅂㅅ'),
|
||||
("ㅘ", "ㅗㅏ"),
|
||||
("ㅙ", "ㅗㅐ"),
|
||||
("ㅚ", "ㅗㅣ"),
|
||||
("ㅝ", "ㅜㅓ"),
|
||||
("ㅞ", "ㅜㅔ"),
|
||||
("ㅟ", "ㅜㅣ"),
|
||||
("ㅢ", "ㅡㅣ"),
|
||||
("ㅑ", "ㅣㅏ"),
|
||||
("ㅒ", "ㅣㅐ"),
|
||||
("ㅕ", "ㅣㅓ"),
|
||||
("ㅖ", "ㅣㅔ"),
|
||||
("ㅛ", "ㅣㅗ"),
|
||||
("ㅠ", "ㅣㅜ"),
|
||||
]
|
||||
]
|
||||
|
||||
# List of (Latin alphabet, hangul) pairs:
|
||||
_latin_to_hangul = [
|
||||
(re.compile("%s" % x[0], re.IGNORECASE), x[1])
|
||||
for x in [
|
||||
("a", "에이"),
|
||||
("b", "비"),
|
||||
("c", "시"),
|
||||
("d", "디"),
|
||||
("e", "이"),
|
||||
("f", "에프"),
|
||||
("g", "지"),
|
||||
("h", "에이치"),
|
||||
("i", "아이"),
|
||||
("j", "제이"),
|
||||
("k", "케이"),
|
||||
("l", "엘"),
|
||||
("m", "엠"),
|
||||
("n", "엔"),
|
||||
("o", "오"),
|
||||
("p", "피"),
|
||||
("q", "큐"),
|
||||
("r", "아르"),
|
||||
("s", "에스"),
|
||||
("t", "티"),
|
||||
("u", "유"),
|
||||
("v", "브이"),
|
||||
("w", "더블유"),
|
||||
("x", "엑스"),
|
||||
("y", "와이"),
|
||||
("z", "제트"),
|
||||
]
|
||||
]
|
||||
|
||||
# List of (ipa, lazy ipa) pairs:
|
||||
_ipa_to_lazy_ipa = [
|
||||
(re.compile("%s" % x[0], re.IGNORECASE), x[1])
|
||||
for x in [
|
||||
("t͡ɕ", "ʧ"),
|
||||
("d͡ʑ", "ʥ"),
|
||||
("ɲ", "n^"),
|
||||
("ɕ", "ʃ"),
|
||||
("ʷ", "w"),
|
||||
("ɭ", "l`"),
|
||||
("ʎ", "ɾ"),
|
||||
("ɣ", "ŋ"),
|
||||
("ɰ", "ɯ"),
|
||||
("ʝ", "j"),
|
||||
("ʌ", "ə"),
|
||||
("ɡ", "g"),
|
||||
("\u031a", "#"),
|
||||
("\u0348", "="),
|
||||
("\u031e", ""),
|
||||
("\u0320", ""),
|
||||
("\u0339", ""),
|
||||
]
|
||||
]
|
||||
|
||||
|
||||
def fix_g2pk2_error(text):
|
||||
new_text = ""
|
||||
i = 0
|
||||
while i < len(text) - 4:
|
||||
if (text[i : i + 3] == "ㅇㅡㄹ" or text[i : i + 3] == "ㄹㅡㄹ") and text[i + 3] == " " and text[i + 4] == "ㄹ":
|
||||
new_text += text[i : i + 3] + " " + "ㄴ"
|
||||
i += 5
|
||||
else:
|
||||
new_text += text[i]
|
||||
i += 1
|
||||
|
||||
new_text += text[i:]
|
||||
return new_text
|
||||
|
||||
|
||||
def latin_to_hangul(text):
|
||||
for regex, replacement in _latin_to_hangul:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def divide_hangul(text):
|
||||
text = j2hcj(h2j(text))
|
||||
for regex, replacement in _hangul_divided:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
def hangul_number(num, sino=True):
|
||||
"""Reference https://github.com/Kyubyong/g2pK"""
|
||||
num = re.sub(",", "", num)
|
||||
|
||||
if num == "0":
|
||||
return "영"
|
||||
if not sino and num == "20":
|
||||
return "스무"
|
||||
|
||||
digits = "123456789"
|
||||
names = "일이삼사오육칠팔구"
|
||||
digit2name = {d: n for d, n in zip(digits, names)}
|
||||
|
||||
modifiers = "한 두 세 네 다섯 여섯 일곱 여덟 아홉"
|
||||
decimals = "열 스물 서른 마흔 쉰 예순 일흔 여든 아흔"
|
||||
digit2mod = {d: mod for d, mod in zip(digits, modifiers.split())}
|
||||
digit2dec = {d: dec for d, dec in zip(digits, decimals.split())}
|
||||
|
||||
spelledout = []
|
||||
for i, digit in enumerate(num):
|
||||
i = len(num) - i - 1
|
||||
if sino:
|
||||
if i == 0:
|
||||
name = digit2name.get(digit, "")
|
||||
elif i == 1:
|
||||
name = digit2name.get(digit, "") + "십"
|
||||
name = name.replace("일십", "십")
|
||||
else:
|
||||
if i == 0:
|
||||
name = digit2mod.get(digit, "")
|
||||
elif i == 1:
|
||||
name = digit2dec.get(digit, "")
|
||||
if digit == "0":
|
||||
if i % 4 == 0:
|
||||
last_three = spelledout[-min(3, len(spelledout)) :]
|
||||
if "".join(last_three) == "":
|
||||
spelledout.append("")
|
||||
continue
|
||||
else:
|
||||
spelledout.append("")
|
||||
continue
|
||||
if i == 2:
|
||||
name = digit2name.get(digit, "") + "백"
|
||||
name = name.replace("일백", "백")
|
||||
elif i == 3:
|
||||
name = digit2name.get(digit, "") + "천"
|
||||
name = name.replace("일천", "천")
|
||||
elif i == 4:
|
||||
name = digit2name.get(digit, "") + "만"
|
||||
name = name.replace("일만", "만")
|
||||
elif i == 5:
|
||||
name = digit2name.get(digit, "") + "십"
|
||||
name = name.replace("일십", "십")
|
||||
elif i == 6:
|
||||
name = digit2name.get(digit, "") + "백"
|
||||
name = name.replace("일백", "백")
|
||||
elif i == 7:
|
||||
name = digit2name.get(digit, "") + "천"
|
||||
name = name.replace("일천", "천")
|
||||
elif i == 8:
|
||||
name = digit2name.get(digit, "") + "억"
|
||||
elif i == 9:
|
||||
name = digit2name.get(digit, "") + "십"
|
||||
elif i == 10:
|
||||
name = digit2name.get(digit, "") + "백"
|
||||
elif i == 11:
|
||||
name = digit2name.get(digit, "") + "천"
|
||||
elif i == 12:
|
||||
name = digit2name.get(digit, "") + "조"
|
||||
elif i == 13:
|
||||
name = digit2name.get(digit, "") + "십"
|
||||
elif i == 14:
|
||||
name = digit2name.get(digit, "") + "백"
|
||||
elif i == 15:
|
||||
name = digit2name.get(digit, "") + "천"
|
||||
spelledout.append(name)
|
||||
return "".join(elem for elem in spelledout)
|
||||
|
||||
|
||||
def number_to_hangul(text):
|
||||
"""Reference https://github.com/Kyubyong/g2pK"""
|
||||
tokens = set(re.findall(r"(\d[\d,]*)([\uac00-\ud71f]+)", text))
|
||||
for token in tokens:
|
||||
num, classifier = token
|
||||
if classifier[:2] in _korean_classifiers or classifier[0] in _korean_classifiers:
|
||||
spelledout = hangul_number(num, sino=False)
|
||||
else:
|
||||
spelledout = hangul_number(num, sino=True)
|
||||
text = text.replace(f"{num}{classifier}", f"{spelledout}{classifier}")
|
||||
# digit by digit for remaining digits
|
||||
digits = "0123456789"
|
||||
names = "영일이삼사오육칠팔구"
|
||||
for d, n in zip(digits, names):
|
||||
text = text.replace(d, n)
|
||||
return text
|
||||
|
||||
|
||||
def korean_to_lazy_ipa(text):
|
||||
text = latin_to_hangul(text)
|
||||
text = number_to_hangul(text)
|
||||
text = re.sub("[\uac00-\ud7af]+", lambda x: ko_pron.romanise(x.group(0), "ipa").split("] ~ [")[0], text)
|
||||
for regex, replacement in _ipa_to_lazy_ipa:
|
||||
text = re.sub(regex, replacement, text)
|
||||
return text
|
||||
|
||||
|
||||
_g2p = G2p()
|
||||
|
||||
|
||||
def korean_to_ipa(text):
|
||||
text = latin_to_hangul(text)
|
||||
text = number_to_hangul(text)
|
||||
text = _g2p(text)
|
||||
text = fix_g2pk2_error(text)
|
||||
text = korean_to_lazy_ipa(text)
|
||||
return text.replace("ʧ", "tʃ").replace("ʥ", "dʑ")
|
||||
|
||||
|
||||
def post_replace_ph(ph):
|
||||
rep_map = {
|
||||
":": ",",
|
||||
";": ",",
|
||||
",": ",",
|
||||
"。": ".",
|
||||
"!": "!",
|
||||
"?": "?",
|
||||
"\n": ".",
|
||||
"·": ",",
|
||||
"、": ",",
|
||||
"...": "…",
|
||||
" ": "空",
|
||||
}
|
||||
if ph in rep_map.keys():
|
||||
ph = rep_map[ph]
|
||||
if ph in symbols:
|
||||
return ph
|
||||
if ph not in symbols:
|
||||
ph = "停"
|
||||
return ph
|
||||
|
||||
|
||||
def g2p(text):
|
||||
text = latin_to_hangul(text)
|
||||
text = _g2p(text)
|
||||
text = divide_hangul(text)
|
||||
text = fix_g2pk2_error(text)
|
||||
text = re.sub(r"([\u3131-\u3163])$", r"\1.", text)
|
||||
# text = "".join([post_replace_ph(i) for i in text])
|
||||
text = [post_replace_ph(i) for i in text]
|
||||
return text
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
text = "안녕하세요"
|
||||
print(g2p(text))
|
||||
26
only_tts/src/text/symbols2.py
Normal file
26
only_tts/src/text/symbols2.py
Normal file
@ -0,0 +1,26 @@
|
||||
# punctuation = ['!', '?', '…', ",", ".","@"]#@는 SP정지
|
||||
punctuation = ["!", "?", "…", ",", "."] # @는 SP정지
|
||||
punctuation.append("-")
|
||||
pu_symbols = punctuation + ["SP", "SP2", "SP3", "UNK"]
|
||||
pad = "_"
|
||||
|
||||
# 영어 ARPABET 음소 (영어 TTS에 필요)
|
||||
arpa = {
|
||||
"AH0", "S", "AH1", "EY2", "AE2", "EH0", "OW2", "UH0", "NG", "B", "G", "AY0", "M", "AA0", "F",
|
||||
"AO0", "ER2", "UH1", "IY1", "AH2", "DH", "IY0", "EY1", "IH0", "K", "N", "W", "IY2", "T", "AA1",
|
||||
"ER1", "EH2", "OY0", "UH2", "UW1", "Z", "AW2", "AW1", "V", "UW2", "AA2", "ER", "AW0", "UW0",
|
||||
"R", "OW1", "EH1", "ZH", "AE0", "IH2", "IH", "Y", "JH", "P", "AY1", "EY0", "OY2", "TH", "HH",
|
||||
"D", "ER0", "CH", "AO1", "AE1", "AO2", "OY1", "AY2", "IH1", "OW0", "L", "SH",
|
||||
}
|
||||
|
||||
# 한국어 자모 (한국어 TTS에 필요)
|
||||
ko_symbols = "ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅏㅓㅗㅜㅡㅣㅐㅔ공정"
|
||||
|
||||
# 한국어/영어만 지원하는 심볼 집합
|
||||
symbols = [pad] + pu_symbols + list(arpa) + list(ko_symbols)
|
||||
symbols = sorted(set(symbols))
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"Total symbols: {len(symbols)}")
|
||||
print(f"Korean symbols: {len(ko_symbols)}")
|
||||
print(f"English ARPA symbols: {len(arpa)}")
|
||||
26
only_tts/src/text/symbols2_new.py
Normal file
26
only_tts/src/text/symbols2_new.py
Normal file
@ -0,0 +1,26 @@
|
||||
# punctuation = ['!', '?', '…', ",", ".","@"]#@는 SP정지
|
||||
punctuation = ["!", "?", "…", ",", "."] # @는 SP정지
|
||||
punctuation.append("-")
|
||||
pu_symbols = punctuation + ["SP", "SP2", "SP3", "UNK"]
|
||||
pad = "_"
|
||||
|
||||
# 영어 ARPABET 음소 (영어 TTS에 필요)
|
||||
arpa = {
|
||||
"AH0", "S", "AH1", "EY2", "AE2", "EH0", "OW2", "UH0", "NG", "B", "G", "AY0", "M", "AA0", "F",
|
||||
"AO0", "ER2", "UH1", "IY1", "AH2", "DH", "IY0", "EY1", "IH0", "K", "N", "W", "IY2", "T", "AA1",
|
||||
"ER1", "EH2", "OY0", "UH2", "UW1", "Z", "AW2", "AW1", "V", "UW2", "AA2", "ER", "AW0", "UW0",
|
||||
"R", "OW1", "EH1", "ZH", "AE0", "IH2", "IH", "Y", "JH", "P", "AY1", "EY0", "OY2", "TH", "HH",
|
||||
"D", "ER0", "CH", "AO1", "AE1", "AO2", "OY1", "AY2", "IH1", "OW0", "L", "SH",
|
||||
}
|
||||
|
||||
# 한국어 자모 (한국어 TTS에 필요)
|
||||
ko_symbols = "ㄱㄴㄷㄹㅁㅂㅅㅇㅈㅊㅋㅌㅍㅎㄲㄸㅃㅆㅉㅏㅓㅗㅜㅡㅣㅐㅔ공정"
|
||||
|
||||
# 한국어/영어만 지원하는 심볼 집합
|
||||
symbols = [pad] + pu_symbols + list(arpa) + list(ko_symbols)
|
||||
symbols = sorted(set(symbols))
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"Total symbols: {len(symbols)}")
|
||||
print(f"Korean symbols: {len(ko_symbols)}")
|
||||
print(f"English ARPA symbols: {len(arpa)}")
|
||||
264
only_tts/tts_simple.py
Normal file
264
only_tts/tts_simple.py
Normal file
@ -0,0 +1,264 @@
|
||||
"""
|
||||
TTS Only - GPT-SoVITS에서 TTS 기능만 분리한 단순 함수
|
||||
|
||||
Usage:
|
||||
from tts_simple import TTSEngine
|
||||
|
||||
# Initialize TTS engine
|
||||
tts = TTSEngine(model="v4", device="cuda")
|
||||
|
||||
# Generate speech
|
||||
audio_data = tts.generate_speech(
|
||||
text="안녕하세요, 테스트입니다.",
|
||||
text_lang="ko",
|
||||
prompt_text="안녕",
|
||||
prompt_lang="ko",
|
||||
ref_audio_path="reference.wav"
|
||||
)
|
||||
|
||||
# Save to file
|
||||
tts.save_audio(audio_data, "output.wav")
|
||||
"""
|
||||
|
||||
import os
|
||||
import sys
|
||||
import warnings
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
from typing import Tuple
|
||||
|
||||
# Add src directory to Python path
|
||||
current_dir = os.path.dirname(os.path.abspath(__file__))
|
||||
src_dir = os.path.join(current_dir, "src")
|
||||
sys.path.insert(0, src_dir)
|
||||
|
||||
from TTS_infer_pack.TTS import TTS, TTS_Config
|
||||
|
||||
# Suppress warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
# Model Configurations - V4 and V2Pro only
|
||||
MODEL_CONFIGS = {
|
||||
"v4": {
|
||||
"description": "V4 model - 48kHz output, fixed metallic noise issues from V3",
|
||||
"version": "v4",
|
||||
"t2s_weights_path": "pretrained_models/gsv-v4-pretrained/s1bert25hz-2kh-longer-epoch=68e-step=50232.ckpt",
|
||||
"vits_weights_path": "pretrained_models/gsv-v4-pretrained/s2Gv4.pth",
|
||||
"vocoder_path": "pretrained_models/gsv-v4-pretrained/vocoder.pth",
|
||||
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
|
||||
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
},
|
||||
"v2pro": {
|
||||
"description": "V2Pro model - Better performance than V4 with V2-level hardware cost",
|
||||
"version": "v2Pro",
|
||||
"t2s_weights_path": "pretrained_models/v2Pro/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
"vits_weights_path": "pretrained_models/v2Pro/s2Gv2Pro.pth",
|
||||
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
|
||||
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"sv_model_path": "pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
},
|
||||
"v2proplus": {
|
||||
"description": "V2ProPlus model - Enhanced version of V2Pro",
|
||||
"version": "v2ProPlus",
|
||||
"t2s_weights_path": "pretrained_models/v2Pro/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt",
|
||||
"vits_weights_path": "pretrained_models/v2Pro/s2Gv2ProPlus.pth",
|
||||
"cnhuhbert_base_path": "pretrained_models/chinese-hubert-base",
|
||||
"bert_base_path": "pretrained_models/chinese-roberta-wwm-ext-large",
|
||||
"sv_model_path": "pretrained_models/sv/pretrained_eres2netv2w24s4ep4.ckpt",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
class TTSEngine:
|
||||
"""Simple TTS Engine for GPT-SoVITS V4/V2Pro models"""
|
||||
|
||||
def __init__(self, model: str = "v4", device: str = "cuda", is_half: bool = True):
|
||||
"""
|
||||
Initialize TTS Engine
|
||||
|
||||
Args:
|
||||
model: Model version ("v4", "v2pro", "v2proplus")
|
||||
device: Device to use ("cuda", "cpu")
|
||||
is_half: Use half precision (FP16)
|
||||
"""
|
||||
if model not in MODEL_CONFIGS:
|
||||
raise ValueError(f"Unsupported model: {model}. Available: {list(MODEL_CONFIGS.keys())}")
|
||||
|
||||
self.model = model
|
||||
self.device = device
|
||||
self.is_half = is_half
|
||||
self.config = MODEL_CONFIGS[model].copy()
|
||||
self.config.update({
|
||||
"device": device,
|
||||
"is_half": is_half
|
||||
})
|
||||
|
||||
# Initialize TTS
|
||||
self.tts_config = TTS_Config(self.config)
|
||||
self.tts = TTS(self.tts_config)
|
||||
|
||||
print(f"Initialized TTS Engine with {model.upper()} model on {device}")
|
||||
|
||||
def generate_speech(
|
||||
self,
|
||||
text: str,
|
||||
text_lang: str,
|
||||
prompt_text: str,
|
||||
prompt_lang: str,
|
||||
ref_audio_path: str,
|
||||
text_split_method: str = "cut5",
|
||||
batch_size: int = 1,
|
||||
speed_factor: float = 1.0,
|
||||
top_k: int = 15,
|
||||
top_p: float = 1.0,
|
||||
temperature: float = 1.0,
|
||||
repetition_penalty: float = 1.35,
|
||||
sample_steps: int = 50,
|
||||
super_sampling: bool = True
|
||||
) -> Tuple[np.ndarray, int]:
|
||||
"""
|
||||
Generate speech from text
|
||||
|
||||
Args:
|
||||
text: Text to synthesize
|
||||
text_lang: Language of the text ("ko", "en")
|
||||
prompt_text: Reference text
|
||||
prompt_lang: Language of the reference text
|
||||
ref_audio_path: Path to reference audio file
|
||||
text_split_method: Text splitting method
|
||||
batch_size: Batch size for inference
|
||||
speed_factor: Speed factor (1.0 = normal speed)
|
||||
top_k: Top-k sampling
|
||||
top_p: Top-p sampling
|
||||
temperature: Sampling temperature
|
||||
repetition_penalty: Repetition penalty
|
||||
sample_steps: Number of sampling steps
|
||||
super_sampling: Enable super sampling
|
||||
|
||||
Returns:
|
||||
Tuple of (audio_data, sample_rate)
|
||||
"""
|
||||
try:
|
||||
generator = self.tts.run(
|
||||
inputs={
|
||||
"text": text,
|
||||
"text_lang": text_lang.upper(),
|
||||
"prompt_text": prompt_text,
|
||||
"prompt_lang": prompt_lang.upper(),
|
||||
"ref_audio_path": ref_audio_path,
|
||||
"aux_ref_audio_paths": [],
|
||||
"text_split_method": text_split_method,
|
||||
"batch_size": batch_size,
|
||||
"speed_factor": speed_factor,
|
||||
"top_k": top_k,
|
||||
"top_p": top_p,
|
||||
"temperature": temperature,
|
||||
"repetition_penalty": repetition_penalty,
|
||||
"sample_steps": sample_steps,
|
||||
"super_sampling": super_sampling
|
||||
}
|
||||
)
|
||||
|
||||
# Collect all audio chunks
|
||||
audio_chunks = []
|
||||
sample_rate = None
|
||||
|
||||
for chunk in generator:
|
||||
if isinstance(chunk, tuple) and len(chunk) == 2:
|
||||
audio_data, sr = chunk
|
||||
if sample_rate is None:
|
||||
sample_rate = sr
|
||||
audio_chunks.append(audio_data)
|
||||
elif isinstance(chunk, dict) and "audio" in chunk:
|
||||
audio_data = chunk["audio"]
|
||||
sr = chunk.get("sample_rate", 48000)
|
||||
if sample_rate is None:
|
||||
sample_rate = sr
|
||||
audio_chunks.append(audio_data)
|
||||
|
||||
if not audio_chunks:
|
||||
raise RuntimeError("No audio generated")
|
||||
|
||||
# Concatenate all chunks
|
||||
final_audio = np.concatenate(audio_chunks, axis=0)
|
||||
|
||||
return final_audio, sample_rate
|
||||
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"TTS generation failed: {str(e)}") from e
|
||||
|
||||
def save_audio(self, audio_data: np.ndarray, output_path: str, sample_rate: int = 48000):
|
||||
"""
|
||||
Save audio data to file
|
||||
|
||||
Args:
|
||||
audio_data: Audio data array
|
||||
output_path: Output file path
|
||||
sample_rate: Sample rate
|
||||
"""
|
||||
try:
|
||||
sf.write(output_path, audio_data, sample_rate)
|
||||
print(f"Audio saved to: {output_path}")
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"Failed to save audio: {str(e)}") from e
|
||||
|
||||
def generate_and_save(
|
||||
self,
|
||||
text: str,
|
||||
text_lang: str,
|
||||
prompt_text: str,
|
||||
prompt_lang: str,
|
||||
ref_audio_path: str,
|
||||
output_path: str,
|
||||
**kwargs
|
||||
):
|
||||
"""
|
||||
Generate speech and save to file in one step
|
||||
|
||||
Args:
|
||||
text: Text to synthesize
|
||||
text_lang: Language of the text
|
||||
prompt_text: Reference text
|
||||
prompt_lang: Language of the reference text
|
||||
ref_audio_path: Path to reference audio file
|
||||
output_path: Output file path
|
||||
**kwargs: Additional arguments for generate_speech
|
||||
"""
|
||||
audio_data, sample_rate = self.generate_speech(
|
||||
text=text,
|
||||
text_lang=text_lang,
|
||||
prompt_text=prompt_text,
|
||||
prompt_lang=prompt_lang,
|
||||
ref_audio_path=ref_audio_path,
|
||||
**kwargs
|
||||
)
|
||||
|
||||
self.save_audio(audio_data, output_path, sample_rate)
|
||||
|
||||
|
||||
def example_usage():
|
||||
"""Example usage of TTSEngine"""
|
||||
try:
|
||||
# Initialize TTS engine
|
||||
tts = TTSEngine(model="v4", device="cuda")
|
||||
|
||||
# Example generation
|
||||
audio_data, sample_rate = tts.generate_speech(
|
||||
text="안녕하세요, GPT-SoVITS TTS 엔진 테스트입니다.",
|
||||
text_lang="ko",
|
||||
prompt_text="안녕",
|
||||
prompt_lang="ko",
|
||||
ref_audio_path="reference.wav" # You need to provide this
|
||||
)
|
||||
|
||||
# Save audio
|
||||
tts.save_audio(audio_data, "output.wav", sample_rate)
|
||||
|
||||
print("TTS generation completed successfully!")
|
||||
|
||||
except (RuntimeError, ValueError, OSError) as e:
|
||||
print(f"Error: {e}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
example_usage()
|
||||
Loading…
x
Reference in New Issue
Block a user