mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 19:41:56 +08:00
mps support
This commit is contained in:
parent
8069264e64
commit
07a5339691
@ -41,12 +41,13 @@ class DistributedBucketSampler(Sampler[T_co]):
|
||||
if num_replicas is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
num_replicas = dist.get_world_size()
|
||||
num_replicas = dist.get_world_size() if torch.cuda.is_available() else 1
|
||||
if rank is None:
|
||||
if not dist.is_available():
|
||||
raise RuntimeError("Requires distributed package to be available")
|
||||
rank = dist.get_rank()
|
||||
torch.cuda.set_device(rank)
|
||||
rank = dist.get_rank() if torch.cuda.is_available() else 0
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_device(rank)
|
||||
if rank >= num_replicas or rank < 0:
|
||||
raise ValueError(
|
||||
"Invalid rank {}, rank should be in the interval"
|
||||
|
@ -35,9 +35,11 @@ from my_utils import load_audio
|
||||
from tools.i18n.i18n import I18nAuto
|
||||
i18n = I18nAuto()
|
||||
|
||||
os.environ['PYTORCH_ENABLE_MPS_FALLBACK'] = '1' # 确保直接启动推理UI时也能够设置。
|
||||
|
||||
if torch.cuda.is_available():
|
||||
device = "cuda"
|
||||
elif torch.mps.is_available():
|
||||
elif torch.backends.mps.is_available():
|
||||
device = "mps"
|
||||
else:
|
||||
device = "cpu"
|
||||
|
@ -46,7 +46,7 @@ if os.path.exists(txt_path) == False:
|
||||
bert_dir = "%s/3-bert" % (opt_dir)
|
||||
os.makedirs(opt_dir, exist_ok=True)
|
||||
os.makedirs(bert_dir, exist_ok=True)
|
||||
device = "cuda:0"
|
||||
device = "cuda:0" if torch.cuda.is_available() else "mps"
|
||||
tokenizer = AutoTokenizer.from_pretrained(bert_pretrained_dir)
|
||||
bert_model = AutoModelForMaskedLM.from_pretrained(bert_pretrained_dir)
|
||||
if is_half == True:
|
||||
|
@ -47,7 +47,7 @@ os.makedirs(wav32dir,exist_ok=True)
|
||||
|
||||
maxx=0.95
|
||||
alpha=0.5
|
||||
device="cuda:0"
|
||||
device="cuda:0" if torch.cuda.is_available() else "mps"
|
||||
model=cnhubert.get_model()
|
||||
# is_half=False
|
||||
if(is_half==True):
|
||||
|
@ -38,7 +38,7 @@ semantic_path = "%s/6-name2semantic-%s.tsv" % (opt_dir, i_part)
|
||||
if os.path.exists(semantic_path) == False:
|
||||
os.makedirs(opt_dir, exist_ok=True)
|
||||
|
||||
device = "cuda:0"
|
||||
device = "cuda:0" if torch.cuda.is_available() else "mps"
|
||||
hps = utils.get_hparams_from_file(s2config_path)
|
||||
vq_model = SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
|
@ -116,7 +116,7 @@ def main(args):
|
||||
devices=-1,
|
||||
benchmark=False,
|
||||
fast_dev_run=False,
|
||||
strategy = "auto" if torch.mps.is_available() else DDPStrategy(
|
||||
strategy = "auto" if torch.backends.mps.is_available() else DDPStrategy(
|
||||
process_group_backend="nccl" if platform.system() != "Windows" else "gloo"
|
||||
), # mps 不支持多节点训练
|
||||
precision=config["train"]["precision"],
|
||||
|
@ -44,9 +44,12 @@ global_step = 0
|
||||
|
||||
def main():
|
||||
"""Assume Single Node Multi GPUs Training Only"""
|
||||
assert torch.cuda.is_available(), "CPU training is not allowed."
|
||||
assert torch.cuda.is_available() or torch.backends.mps.is_available(), "Only GPU training is allowed."
|
||||
|
||||
n_gpus = torch.cuda.device_count()
|
||||
if torch.backends.mps.is_available():
|
||||
n_gpus = 1
|
||||
else:
|
||||
n_gpus = torch.cuda.device_count()
|
||||
os.environ["MASTER_ADDR"] = "localhost"
|
||||
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
||||
|
||||
@ -70,13 +73,14 @@ def run(rank, n_gpus, hps):
|
||||
writer_eval = SummaryWriter(log_dir=os.path.join(hps.s2_ckpt_dir, "eval"))
|
||||
|
||||
dist.init_process_group(
|
||||
backend="gloo" if os.name == "nt" else "nccl",
|
||||
backend = "gloo" if os.name == "nt" or torch.backends.mps.is_available() else "nccl",
|
||||
init_method="env://",
|
||||
world_size=n_gpus,
|
||||
rank=rank,
|
||||
)
|
||||
torch.manual_seed(hps.train.seed)
|
||||
torch.cuda.set_device(rank)
|
||||
if torch.cuda.is_available():
|
||||
torch.cuda.set_device(rank)
|
||||
|
||||
train_dataset = TextAudioSpeakerLoader(hps.data) ########
|
||||
train_sampler = DistributedBucketSampler(
|
||||
@ -128,9 +132,14 @@ def run(rank, n_gpus, hps):
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
).cuda(rank)
|
||||
).cuda(rank) if torch.cuda.is_available() else SynthesizerTrn(
|
||||
hps.data.filter_length // 2 + 1,
|
||||
hps.train.segment_size // hps.data.hop_length,
|
||||
n_speakers=hps.data.n_speakers,
|
||||
**hps.model,
|
||||
).to("mps")
|
||||
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank)
|
||||
net_d = MultiPeriodDiscriminator(hps.model.use_spectral_norm).cuda(rank) if torch.cuda.is_available() else MultiPeriodDiscriminator(hps.model.use_spectral_norm).to("mps")
|
||||
for name, param in net_g.named_parameters():
|
||||
if not param.requires_grad:
|
||||
print(name, "not requires_grad")
|
||||
@ -174,8 +183,12 @@ def run(rank, n_gpus, hps):
|
||||
betas=hps.train.betas,
|
||||
eps=hps.train.eps,
|
||||
)
|
||||
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
||||
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
||||
if torch.cuda.is_available():
|
||||
net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
|
||||
net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
|
||||
else:
|
||||
net_g = net_g.to("mps")
|
||||
net_d = net_d.to("mps")
|
||||
|
||||
try: # 如果能加载自动resume
|
||||
_, _, _, epoch_str = utils.load_checkpoint(
|
||||
@ -205,6 +218,9 @@ def run(rank, n_gpus, hps):
|
||||
net_g.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||
strict=False,
|
||||
) if torch.cuda.is_available() else net_g.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2G, map_location="cpu")["weight"],
|
||||
strict=False,
|
||||
)
|
||||
) ##测试不加载优化器
|
||||
if hps.train.pretrained_s2D != "":
|
||||
@ -213,6 +229,8 @@ def run(rank, n_gpus, hps):
|
||||
print(
|
||||
net_d.module.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
||||
) if torch.cuda.is_available() else net_d.load_state_dict(
|
||||
torch.load(hps.train.pretrained_s2D, map_location="cpu")["weight"]
|
||||
)
|
||||
)
|
||||
|
||||
@ -288,18 +306,26 @@ def train_and_evaluate(
|
||||
text,
|
||||
text_lengths,
|
||||
) in tqdm(enumerate(train_loader)):
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
ssl = ssl.cuda(rank, non_blocking=True)
|
||||
ssl.requires_grad = False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
if torch.cuda.is_available():
|
||||
spec, spec_lengths = spec.cuda(rank, non_blocking=True), spec_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
y, y_lengths = y.cuda(rank, non_blocking=True), y_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
ssl = ssl.cuda(rank, non_blocking=True)
|
||||
ssl.requires_grad = False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.cuda(rank, non_blocking=True), text_lengths.cuda(
|
||||
rank, non_blocking=True
|
||||
)
|
||||
else:
|
||||
spec, spec_lengths = spec.to("mps"), spec_lengths.to("mps")
|
||||
y, y_lengths = y.to("mps"), y_lengths.to("mps")
|
||||
ssl = ssl.to("mps")
|
||||
ssl.requires_grad = False
|
||||
# ssl_lengths = ssl_lengths.cuda(rank, non_blocking=True)
|
||||
text, text_lengths = text.to("mps"), text_lengths.to("mps")
|
||||
|
||||
with autocast(enabled=hps.train.fp16_run):
|
||||
(
|
||||
@ -500,13 +526,21 @@ def evaluate(hps, generator, eval_loader, writer_eval):
|
||||
text_lengths,
|
||||
) in enumerate(eval_loader):
|
||||
print(111)
|
||||
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
||||
y, y_lengths = y.cuda(), y_lengths.cuda()
|
||||
ssl = ssl.cuda()
|
||||
text, text_lengths = text.cuda(), text_lengths.cuda()
|
||||
if torch.cuda.is_available():
|
||||
spec, spec_lengths = spec.cuda(), spec_lengths.cuda()
|
||||
y, y_lengths = y.cuda(), y_lengths.cuda()
|
||||
ssl = ssl.cuda()
|
||||
text, text_lengths = text.cuda(), text_lengths.cuda()
|
||||
else:
|
||||
spec, spec_lengths = spec.to("mps"), spec_lengths.to("mps")
|
||||
y, y_lengths = y.to("mps"), y_lengths.to("mps")
|
||||
ssl = ssl.to("mps")
|
||||
text, text_lengths = text.to("mps"), text_lengths.to("mps")
|
||||
for test in [0, 1]:
|
||||
y_hat, mask, *_ = generator.module.infer(
|
||||
ssl, spec, spec_lengths, text, text_lengths, test=test
|
||||
) if torch.cuda.is_available() else generator.infer(
|
||||
ssl, spec, spec_lengths, text, text_lengths, test=test
|
||||
)
|
||||
y_hat_lengths = mask.sum([1, 2]).long() * hps.data.hop_length
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user