mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-05 12:38:35 +08:00
parent
6c468583c5
commit
03b662a769
@ -3,7 +3,7 @@ import math
|
|||||||
import os, sys, gc
|
import os, sys, gc
|
||||||
import random
|
import random
|
||||||
import traceback
|
import traceback
|
||||||
|
import time
|
||||||
import torchaudio
|
import torchaudio
|
||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
now_dir = os.getcwd()
|
now_dir = os.getcwd()
|
||||||
@ -908,11 +908,14 @@ class TTS:
|
|||||||
split_bucket = False
|
split_bucket = False
|
||||||
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
|
print(i18n("分段返回模式不支持分桶处理,已自动关闭分桶处理"))
|
||||||
|
|
||||||
if split_bucket and speed_factor==1.0:
|
if split_bucket and speed_factor==1.0 and not (self.configs.is_v3_synthesizer and parallel_infer):
|
||||||
print(i18n("分桶处理模式已开启"))
|
print(i18n("分桶处理模式已开启"))
|
||||||
elif speed_factor!=1.0:
|
elif speed_factor!=1.0:
|
||||||
print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理"))
|
print(i18n("语速调节不支持分桶处理,已自动关闭分桶处理"))
|
||||||
split_bucket = False
|
split_bucket = False
|
||||||
|
elif self.configs.is_v3_synthesizer and parallel_infer:
|
||||||
|
print(i18n("当开启并行推理模式时,SoVits V3模型不支持分桶处理,已自动关闭分桶处理"))
|
||||||
|
split_bucket = False
|
||||||
else:
|
else:
|
||||||
print(i18n("分桶处理模式已关闭"))
|
print(i18n("分桶处理模式已关闭"))
|
||||||
|
|
||||||
@ -936,7 +939,7 @@ class TTS:
|
|||||||
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
raise ValueError("ref_audio_path cannot be empty, when the reference audio is not set using set_ref_audio()")
|
||||||
|
|
||||||
###### setting reference audio and prompt text preprocessing ########
|
###### setting reference audio and prompt text preprocessing ########
|
||||||
t0 = ttime()
|
t0 = time.perf_counter()
|
||||||
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
|
if (ref_audio_path is not None) and (ref_audio_path != self.prompt_cache["ref_audio_path"]):
|
||||||
if not os.path.exists(ref_audio_path):
|
if not os.path.exists(ref_audio_path):
|
||||||
raise ValueError(f"{ref_audio_path} not exists")
|
raise ValueError(f"{ref_audio_path} not exists")
|
||||||
@ -975,7 +978,7 @@ class TTS:
|
|||||||
|
|
||||||
|
|
||||||
###### text preprocessing ########
|
###### text preprocessing ########
|
||||||
t1 = ttime()
|
t1 = time.perf_counter()
|
||||||
data:list = None
|
data:list = None
|
||||||
if not return_fragment:
|
if not return_fragment:
|
||||||
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version)
|
data = self.text_preprocessor.preprocess(text, text_lang, text_split_method, self.configs.version)
|
||||||
@ -1027,7 +1030,7 @@ class TTS:
|
|||||||
return batch[0]
|
return batch[0]
|
||||||
|
|
||||||
|
|
||||||
t2 = ttime()
|
t2 = time.perf_counter()
|
||||||
try:
|
try:
|
||||||
print("############ 推理 ############")
|
print("############ 推理 ############")
|
||||||
###### inference ######
|
###### inference ######
|
||||||
@ -1036,7 +1039,7 @@ class TTS:
|
|||||||
audio = []
|
audio = []
|
||||||
output_sr = self.configs.sampling_rate if not self.configs.is_v3_synthesizer else 24000
|
output_sr = self.configs.sampling_rate if not self.configs.is_v3_synthesizer else 24000
|
||||||
for item in data:
|
for item in data:
|
||||||
t3 = ttime()
|
t3 = time.perf_counter()
|
||||||
if return_fragment:
|
if return_fragment:
|
||||||
item = make_batch(item)
|
item = make_batch(item)
|
||||||
if item is None:
|
if item is None:
|
||||||
@ -1071,7 +1074,7 @@ class TTS:
|
|||||||
max_len=max_len,
|
max_len=max_len,
|
||||||
repetition_penalty=repetition_penalty,
|
repetition_penalty=repetition_penalty,
|
||||||
)
|
)
|
||||||
t4 = ttime()
|
t4 = time.perf_counter()
|
||||||
t_34 += t4 - t3
|
t_34 += t4 - t3
|
||||||
|
|
||||||
refer_audio_spec:torch.Tensor = [item.to(dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"]]
|
refer_audio_spec:torch.Tensor = [item.to(dtype=self.precision, device=self.configs.device) for item in self.prompt_cache["refer_spec"]]
|
||||||
@ -1094,6 +1097,7 @@ class TTS:
|
|||||||
print(f"############ {i18n('合成音频')} ############")
|
print(f"############ {i18n('合成音频')} ############")
|
||||||
if not self.configs.is_v3_synthesizer:
|
if not self.configs.is_v3_synthesizer:
|
||||||
if speed_factor == 1.0:
|
if speed_factor == 1.0:
|
||||||
|
print(f"{i18n('并行合成中')}...")
|
||||||
# ## vits并行推理 method 2
|
# ## vits并行推理 method 2
|
||||||
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
pred_semantic_list = [item[-idx:] for item, idx in zip(pred_semantic_list, idx_list)]
|
||||||
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
upsample_rate = math.prod(self.vits_model.upsample_rates)
|
||||||
@ -1118,17 +1122,28 @@ class TTS:
|
|||||||
audio_fragment
|
audio_fragment
|
||||||
) ###试试重建不带上prompt部分
|
) ###试试重建不带上prompt部分
|
||||||
else:
|
else:
|
||||||
for i, idx in enumerate(tqdm(idx_list)):
|
if parallel_infer:
|
||||||
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
print(f"{i18n('并行合成中')}...")
|
||||||
_pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
|
audio_fragments = self.v3_synthesis_batched_infer(
|
||||||
audio_fragment = self.v3_synthesis(
|
idx_list,
|
||||||
_pred_semantic, phones, speed=speed_factor, sample_steps=sample_steps
|
pred_semantic_list,
|
||||||
)
|
batch_phones,
|
||||||
batch_audio_fragment.append(
|
speed=speed_factor,
|
||||||
audio_fragment
|
sample_steps=sample_steps
|
||||||
)
|
)
|
||||||
|
batch_audio_fragment.extend(audio_fragments)
|
||||||
|
else:
|
||||||
|
for i, idx in enumerate(tqdm(idx_list)):
|
||||||
|
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||||||
|
_pred_semantic = (pred_semantic_list[i][-idx:].unsqueeze(0).unsqueeze(0)) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||||
|
audio_fragment = self.v3_synthesis(
|
||||||
|
_pred_semantic, phones, speed=speed_factor, sample_steps=sample_steps
|
||||||
|
)
|
||||||
|
batch_audio_fragment.append(
|
||||||
|
audio_fragment
|
||||||
|
)
|
||||||
|
|
||||||
t5 = ttime()
|
t5 = time.perf_counter()
|
||||||
t_45 += t5 - t4
|
t_45 += t5 - t4
|
||||||
if return_fragment:
|
if return_fragment:
|
||||||
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
print("%.3f\t%.3f\t%.3f\t%.3f" % (t1 - t0, t2 - t1, t4 - t3, t5 - t4))
|
||||||
@ -1219,13 +1234,13 @@ class TTS:
|
|||||||
|
|
||||||
if super_sampling:
|
if super_sampling:
|
||||||
print(f"############ {i18n('音频超采样')} ############")
|
print(f"############ {i18n('音频超采样')} ############")
|
||||||
t1 = ttime()
|
t1 = time.perf_counter()
|
||||||
self.init_sr_model()
|
self.init_sr_model()
|
||||||
if not self.sr_model_not_exist:
|
if not self.sr_model_not_exist:
|
||||||
audio,sr=self.sr_model(audio.unsqueeze(0),sr)
|
audio,sr=self.sr_model(audio.unsqueeze(0),sr)
|
||||||
max_audio=np.abs(audio).max()
|
max_audio=np.abs(audio).max()
|
||||||
if max_audio > 1: audio /= max_audio
|
if max_audio > 1: audio /= max_audio
|
||||||
t2 = ttime()
|
t2 = time.perf_counter()
|
||||||
print(f"超采样用时:{t2-t1:.3f}s")
|
print(f"超采样用时:{t2-t1:.3f}s")
|
||||||
else:
|
else:
|
||||||
audio = audio.cpu().numpy()
|
audio = audio.cpu().numpy()
|
||||||
@ -1260,7 +1275,7 @@ class TTS:
|
|||||||
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||||||
if ref_sr!=24000:
|
if ref_sr!=24000:
|
||||||
ref_audio=resample(ref_audio, ref_sr, self.configs.device)
|
ref_audio=resample(ref_audio, ref_sr, self.configs.device)
|
||||||
# print("ref_audio",ref_audio.abs().mean())
|
|
||||||
mel2 = mel_fn(ref_audio)
|
mel2 = mel_fn(ref_audio)
|
||||||
mel2 = norm_spec(mel2)
|
mel2 = norm_spec(mel2)
|
||||||
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||||||
@ -1285,15 +1300,156 @@ class TTS:
|
|||||||
|
|
||||||
cfm_res = self.vits_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
cfm_res = self.vits_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||||||
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
cfm_res = cfm_res[:, :, mel2.shape[2]:]
|
||||||
mel2 = cfm_res[:, :, -T_min:]
|
|
||||||
|
|
||||||
|
mel2 = cfm_res[:, :, -T_min:]
|
||||||
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
fea_ref = fea_todo_chunk[:, :, -T_min:]
|
||||||
|
|
||||||
cfm_resss.append(cfm_res)
|
cfm_resss.append(cfm_res)
|
||||||
cmf_res = torch.cat(cfm_resss, 2)
|
cfm_res = torch.cat(cfm_resss, 2)
|
||||||
cmf_res = denorm_spec(cmf_res)
|
cfm_res = denorm_spec(cfm_res)
|
||||||
|
|
||||||
|
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
wav_gen = self.bigvgan_model(cmf_res)
|
wav_gen = self.bigvgan_model(cfm_res)
|
||||||
audio=wav_gen[0][0]#.cpu().detach().numpy()
|
audio=wav_gen[0][0]#.cpu().detach().numpy()
|
||||||
|
|
||||||
return audio
|
return audio
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def v3_synthesis_batched_infer(self,
|
||||||
|
idx_list:List[int],
|
||||||
|
semantic_tokens_list:List[torch.Tensor],
|
||||||
|
batch_phones:List[torch.Tensor],
|
||||||
|
speed:float=1.0,
|
||||||
|
sample_steps:int=32
|
||||||
|
)->List[torch.Tensor]:
|
||||||
|
|
||||||
|
prompt_semantic_tokens = self.prompt_cache["prompt_semantic"].unsqueeze(0).unsqueeze(0).to(self.configs.device)
|
||||||
|
prompt_phones = torch.LongTensor(self.prompt_cache["phones"]).unsqueeze(0).to(self.configs.device)
|
||||||
|
refer_audio_spec = self.prompt_cache["refer_spec"][0].to(dtype=self.precision, device=self.configs.device)
|
||||||
|
|
||||||
|
fea_ref,ge = self.vits_model.decode_encp(prompt_semantic_tokens, prompt_phones, refer_audio_spec)
|
||||||
|
ref_audio:torch.Tensor = self.prompt_cache["raw_audio"]
|
||||||
|
ref_sr = self.prompt_cache["raw_sr"]
|
||||||
|
ref_audio=ref_audio.to(self.configs.device).float()
|
||||||
|
if (ref_audio.shape[0] == 2):
|
||||||
|
ref_audio = ref_audio.mean(0).unsqueeze(0)
|
||||||
|
if ref_sr!=24000:
|
||||||
|
ref_audio=resample(ref_audio, ref_sr, self.configs.device)
|
||||||
|
|
||||||
|
mel2 = mel_fn(ref_audio)
|
||||||
|
mel2 = norm_spec(mel2)
|
||||||
|
T_min = min(mel2.shape[2], fea_ref.shape[2])
|
||||||
|
mel2 = mel2[:, :, :T_min]
|
||||||
|
fea_ref = fea_ref[:, :, :T_min]
|
||||||
|
if (T_min > 468):
|
||||||
|
mel2 = mel2[:, :, -468:]
|
||||||
|
fea_ref = fea_ref[:, :, -468:]
|
||||||
|
T_min = 468
|
||||||
|
chunk_len = 934 - T_min
|
||||||
|
|
||||||
|
mel2=mel2.to(self.precision)
|
||||||
|
|
||||||
|
|
||||||
|
# #### batched inference
|
||||||
|
overlapped_len = 12
|
||||||
|
feat_chunks = []
|
||||||
|
feat_lens = []
|
||||||
|
feat_list = []
|
||||||
|
|
||||||
|
for i, idx in enumerate(idx_list):
|
||||||
|
phones = batch_phones[i].unsqueeze(0).to(self.configs.device)
|
||||||
|
semantic_tokens = semantic_tokens_list[i][-idx:].unsqueeze(0).unsqueeze(0) # .unsqueeze(0)#mq要多unsqueeze一次
|
||||||
|
feat, _ = self.vits_model.decode_encp(semantic_tokens, phones, refer_audio_spec, ge, speed)
|
||||||
|
feat_list.append(feat)
|
||||||
|
feat_lens.append(feat.shape[2])
|
||||||
|
|
||||||
|
feats = torch.cat(feat_list, 2)
|
||||||
|
feats_padded = F.pad(feats, (overlapped_len,0), "constant", 0)
|
||||||
|
pos = 0
|
||||||
|
padding_len = 0
|
||||||
|
while True:
|
||||||
|
if pos ==0:
|
||||||
|
chunk = feats_padded[:, :, pos:pos + chunk_len]
|
||||||
|
else:
|
||||||
|
pos = pos - overlapped_len
|
||||||
|
chunk = feats_padded[:, :, pos:pos + chunk_len]
|
||||||
|
pos += chunk_len
|
||||||
|
if (chunk.shape[-1] == 0): break
|
||||||
|
|
||||||
|
# padding for the last chunk
|
||||||
|
padding_len = chunk_len - chunk.shape[2]
|
||||||
|
if padding_len != 0:
|
||||||
|
chunk = F.pad(chunk, (0,padding_len), "constant", 0)
|
||||||
|
feat_chunks.append(chunk)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
feat_chunks = torch.cat(feat_chunks, 0)
|
||||||
|
bs = feat_chunks.shape[0]
|
||||||
|
fea_ref = fea_ref.repeat(bs,1,1)
|
||||||
|
fea = torch.cat([fea_ref, feat_chunks], 2).transpose(2, 1)
|
||||||
|
pred_spec = self.vits_model.cfm.inference(fea, torch.LongTensor([fea.size(1)]).to(fea.device), mel2, sample_steps, inference_cfg_rate=0)
|
||||||
|
pred_spec = pred_spec[:, :, -chunk_len:]
|
||||||
|
dd = pred_spec.shape[1]
|
||||||
|
pred_spec = pred_spec.permute(1, 0, 2).contiguous().view(dd, -1).unsqueeze(0)
|
||||||
|
# pred_spec = pred_spec[..., :-padding_len]
|
||||||
|
|
||||||
|
|
||||||
|
pred_spec = denorm_spec(pred_spec)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
wav_gen = self.bigvgan_model(pred_spec)
|
||||||
|
audio = wav_gen[0][0]#.cpu().detach().numpy()
|
||||||
|
|
||||||
|
|
||||||
|
audio_fragments = []
|
||||||
|
upsample_rate = 256
|
||||||
|
pos = 0
|
||||||
|
|
||||||
|
while pos < audio.shape[-1]:
|
||||||
|
audio_fragment = audio[pos:pos+chunk_len*upsample_rate]
|
||||||
|
audio_fragments.append(audio_fragment)
|
||||||
|
pos += chunk_len*upsample_rate
|
||||||
|
|
||||||
|
audio = self.sola_algorithm(audio_fragments, overlapped_len*upsample_rate)
|
||||||
|
audio = audio[overlapped_len*upsample_rate:-padding_len*upsample_rate]
|
||||||
|
|
||||||
|
audio_fragments = []
|
||||||
|
for feat_len in feat_lens:
|
||||||
|
audio_fragment = audio[:feat_len*upsample_rate]
|
||||||
|
audio_fragments.append(audio_fragment)
|
||||||
|
audio = audio[feat_len*upsample_rate:]
|
||||||
|
|
||||||
|
|
||||||
|
return audio_fragments
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
def sola_algorithm(self,
|
||||||
|
audio_fragments:List[torch.Tensor],
|
||||||
|
overlap_len:int,
|
||||||
|
):
|
||||||
|
|
||||||
|
for i in range(len(audio_fragments)-1):
|
||||||
|
f1 = audio_fragments[i]
|
||||||
|
f2 = audio_fragments[i+1]
|
||||||
|
w1 = f1[-overlap_len:]
|
||||||
|
w2 = f2[:overlap_len]
|
||||||
|
assert w1.shape == w2.shape
|
||||||
|
corr = F.conv1d(w1.view(1,1,-1), w2.view(1,1,-1),padding=w2.shape[-1]//2).view(-1)[:-1]
|
||||||
|
idx = corr.argmax()
|
||||||
|
f1_ = f1[:-(overlap_len-idx)]
|
||||||
|
audio_fragments[i] = f1_
|
||||||
|
|
||||||
|
f2_ = f2[idx:]
|
||||||
|
window = torch.hann_window((overlap_len-idx)*2, device=f1.device, dtype=f1.dtype)
|
||||||
|
f2_[:(overlap_len-idx)] = window[:(overlap_len-idx)]*f2_[:(overlap_len-idx)] + window[(overlap_len-idx):]*f1[-(overlap_len-idx):]
|
||||||
|
audio_fragments[i+1] = f2_
|
||||||
|
|
||||||
|
|
||||||
|
return torch.cat(audio_fragments, 0)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user