mirror of
https://github.com/RVC-Boss/GPT-SoVITS.git
synced 2025-04-06 03:57:44 +08:00
Merge branch 'RVC-Boss:main' into main
This commit is contained in:
commit
012440bc0e
@ -49,10 +49,13 @@ maxx=0.95
|
|||||||
alpha=0.5
|
alpha=0.5
|
||||||
device="cuda:0"
|
device="cuda:0"
|
||||||
model=cnhubert.get_model()
|
model=cnhubert.get_model()
|
||||||
|
# is_half=False
|
||||||
if(is_half==True):
|
if(is_half==True):
|
||||||
model=model.half().to(device)
|
model=model.half().to(device)
|
||||||
else:
|
else:
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
|
|
||||||
|
nan_fails=[]
|
||||||
def name2go(wav_name):
|
def name2go(wav_name):
|
||||||
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
|
hubert_path="%s/%s.pt"%(hubert_dir,wav_name)
|
||||||
if(os.path.exists(hubert_path)):return
|
if(os.path.exists(hubert_path)):return
|
||||||
@ -60,25 +63,27 @@ def name2go(wav_name):
|
|||||||
tmp_audio = load_audio(wav_path, 32000)
|
tmp_audio = load_audio(wav_path, 32000)
|
||||||
tmp_max = np.abs(tmp_audio).max()
|
tmp_max = np.abs(tmp_audio).max()
|
||||||
if tmp_max > 2.2:
|
if tmp_max > 2.2:
|
||||||
print("%s-%s-%s-filtered" % (idx0, idx1, tmp_max))
|
print("%s-filtered" % (wav_name, tmp_max))
|
||||||
return
|
return
|
||||||
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
|
tmp_audio32 = (tmp_audio / tmp_max * (maxx * alpha*32768)) + ((1 - alpha)*32768) * tmp_audio
|
||||||
tmp_audio = librosa.resample(
|
tmp_audio = librosa.resample(
|
||||||
tmp_audio32, orig_sr=32000, target_sr=16000
|
tmp_audio32, orig_sr=32000, target_sr=16000
|
||||||
)
|
)#不是重采样问题
|
||||||
tensor_wav16 = torch.from_numpy(tmp_audio)
|
tensor_wav16 = torch.from_numpy(tmp_audio)
|
||||||
if (is_half == True):
|
if (is_half == True):
|
||||||
tensor_wav16=tensor_wav16.half().to(device)
|
tensor_wav16=tensor_wav16.half().to(device)
|
||||||
else:
|
else:
|
||||||
tensor_wav16 = tensor_wav16.to(device)
|
tensor_wav16 = tensor_wav16.to(device)
|
||||||
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
ssl=model.model(tensor_wav16.unsqueeze(0))["last_hidden_state"].transpose(1,2).cpu()#torch.Size([1, 768, 215])
|
||||||
if np.isnan(ssl.detach().numpy()).sum()!= 0:return
|
if np.isnan(ssl.detach().numpy()).sum()!= 0:
|
||||||
|
nan_fails.append(wav_name)
|
||||||
|
print("nan filtered:%s"%wav_name)
|
||||||
|
return
|
||||||
wavfile.write(
|
wavfile.write(
|
||||||
"%s/%s"%(wav32dir,wav_name),
|
"%s/%s"%(wav32dir,wav_name),
|
||||||
32000,
|
32000,
|
||||||
tmp_audio32.astype("int16"),
|
tmp_audio32.astype("int16"),
|
||||||
)
|
)
|
||||||
# torch.save(ssl,hubert_path )
|
|
||||||
my_save(ssl,hubert_path )
|
my_save(ssl,hubert_path )
|
||||||
|
|
||||||
with open(inp_text,"r",encoding="utf8")as f:
|
with open(inp_text,"r",encoding="utf8")as f:
|
||||||
@ -92,3 +97,12 @@ for line in lines[int(i_part)::int(all_parts)]:
|
|||||||
name2go(wav_name)
|
name2go(wav_name)
|
||||||
except:
|
except:
|
||||||
print(line,traceback.format_exc())
|
print(line,traceback.format_exc())
|
||||||
|
|
||||||
|
if(len(nan_fails)>0 and is_half==True):
|
||||||
|
is_half=False
|
||||||
|
model=model.float()
|
||||||
|
for wav_name in nan_fails:
|
||||||
|
try:
|
||||||
|
name2go(wav_name)
|
||||||
|
except:
|
||||||
|
print(wav_name,traceback.format_exc())
|
@ -20,5 +20,6 @@
|
|||||||
|
|
||||||
3-音频路径检查。如果尝试读取输入错的路径报错路径不存在,而非ffmpeg错误。
|
3-音频路径检查。如果尝试读取输入错的路径报错路径不存在,而非ffmpeg错误。
|
||||||
|
|
||||||
待修复:-hubert提取在half下出现nan概率更高的问题
|
### 20240123更新
|
||||||
|
1-hubert提取在half下出现nan概率更高的问题
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user