diff --git a/GPT_SoVITS/f5_tts/model/__init__.py b/GPT_SoVITS/f5_tts/model/__init__.py new file mode 100644 index 0000000..50cff99 --- /dev/null +++ b/GPT_SoVITS/f5_tts/model/__init__.py @@ -0,0 +1,13 @@ +# from f5_tts.model.cfm import CFM +# +# from f5_tts.model.backbones.unett import UNetT +from GPT_SoVITS.f5_tts.model.backbones.dit import DiT +# from f5_tts.model.backbones.dit import DiTNoCond +# from f5_tts.model.backbones.dit import DiTNoCondNoT +# from f5_tts.model.backbones.mmdit import MMDiT + +# from f5_tts.model.trainer import Trainer + + +# __all__ = ["CFM", "UNetT", "DiT", "MMDiT", "Trainer"] +# __all__ = ["CFM", "UNetT", "DiTNoCond","DiT", "MMDiT"] diff --git a/GPT_SoVITS/f5_tts/model/modules.py b/GPT_SoVITS/f5_tts/model/modules.py new file mode 100644 index 0000000..22f1f99 --- /dev/null +++ b/GPT_SoVITS/f5_tts/model/modules.py @@ -0,0 +1,664 @@ +""" +ein notation: +b - batch +n - sequence +nt - text sequence +nw - raw wave length +d - dimension +""" + +from __future__ import annotations + +import math +from typing import Optional + +import torch +import torch.nn.functional as F +import torchaudio +from librosa.filters import mel as librosa_mel_fn +from torch import nn +from x_transformers.x_transformers import apply_rotary_pos_emb + + +# raw wav to mel spec + + +mel_basis_cache = {} +hann_window_cache = {} + + +def get_bigvgan_mel_spectrogram( + waveform, + n_fft=1024, + n_mel_channels=100, + target_sample_rate=24000, + hop_length=256, + win_length=1024, + fmin=0, + fmax=None, + center=False, +): # Copy from https://github.com/NVIDIA/BigVGAN/tree/main + device = waveform.device + key = f"{n_fft}_{n_mel_channels}_{target_sample_rate}_{hop_length}_{win_length}_{fmin}_{fmax}_{device}" + + if key not in mel_basis_cache: + mel = librosa_mel_fn(sr=target_sample_rate, n_fft=n_fft, n_mels=n_mel_channels, fmin=fmin, fmax=fmax) + mel_basis_cache[key] = torch.from_numpy(mel).float().to(device) # TODO: why they need .float()? + hann_window_cache[key] = torch.hann_window(win_length).to(device) + + mel_basis = mel_basis_cache[key] + hann_window = hann_window_cache[key] + + padding = (n_fft - hop_length) // 2 + waveform = torch.nn.functional.pad(waveform.unsqueeze(1), (padding, padding), mode="reflect").squeeze(1) + + spec = torch.stft( + waveform, + n_fft, + hop_length=hop_length, + win_length=win_length, + window=hann_window, + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=True, + ) + spec = torch.sqrt(torch.view_as_real(spec).pow(2).sum(-1) + 1e-9) + + mel_spec = torch.matmul(mel_basis, spec) + mel_spec = torch.log(torch.clamp(mel_spec, min=1e-5)) + + return mel_spec + + +def get_vocos_mel_spectrogram( + waveform, + n_fft=1024, + n_mel_channels=100, + target_sample_rate=24000, + hop_length=256, + win_length=1024, +): + mel_stft = torchaudio.transforms.MelSpectrogram( + sample_rate=target_sample_rate, + n_fft=n_fft, + win_length=win_length, + hop_length=hop_length, + n_mels=n_mel_channels, + power=1, + center=True, + normalized=False, + norm=None, + ).to(waveform.device) + if len(waveform.shape) == 3: + waveform = waveform.squeeze(1) # 'b 1 nw -> b nw' + + assert len(waveform.shape) == 2 + + mel = mel_stft(waveform) + mel = mel.clamp(min=1e-5).log() + return mel + + +class MelSpec(nn.Module): + def __init__( + self, + n_fft=1024, + hop_length=256, + win_length=1024, + n_mel_channels=100, + target_sample_rate=24_000, + mel_spec_type="vocos", + ): + super().__init__() + assert mel_spec_type in ["vocos", "bigvgan"], print("We only support two extract mel backend: vocos or bigvgan") + + self.n_fft = n_fft + self.hop_length = hop_length + self.win_length = win_length + self.n_mel_channels = n_mel_channels + self.target_sample_rate = target_sample_rate + + if mel_spec_type == "vocos": + self.extractor = get_vocos_mel_spectrogram + elif mel_spec_type == "bigvgan": + self.extractor = get_bigvgan_mel_spectrogram + + self.register_buffer("dummy", torch.tensor(0), persistent=False) + + def forward(self, wav): + if self.dummy.device != wav.device: + self.to(wav.device) + + mel = self.extractor( + waveform=wav, + n_fft=self.n_fft, + n_mel_channels=self.n_mel_channels, + target_sample_rate=self.target_sample_rate, + hop_length=self.hop_length, + win_length=self.win_length, + ) + + return mel + + +# sinusoidal position embedding + + +class SinusPositionEmbedding(nn.Module): + def __init__(self, dim): + super().__init__() + self.dim = dim + + def forward(self, x, scale=1000): + device = x.device + half_dim = self.dim // 2 + emb = math.log(10000) / (half_dim - 1) + emb = torch.exp(torch.arange(half_dim, device=device).float() * -emb) + emb = scale * x.unsqueeze(1) * emb.unsqueeze(0) + emb = torch.cat((emb.sin(), emb.cos()), dim=-1) + return emb + + +# convolutional position embedding + + +class ConvPositionEmbedding(nn.Module): + def __init__(self, dim, kernel_size=31, groups=16): + super().__init__() + assert kernel_size % 2 != 0 + self.conv1d = nn.Sequential( + nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2), + nn.Mish(), + nn.Conv1d(dim, dim, kernel_size, groups=groups, padding=kernel_size // 2), + nn.Mish(), + ) + + def forward(self, x: float["b n d"], mask: bool["b n"] | None = None): # noqa: F722 + if mask is not None: + mask = mask[..., None] + x = x.masked_fill(~mask, 0.0) + + x = x.permute(0, 2, 1) + x = self.conv1d(x) + out = x.permute(0, 2, 1) + + if mask is not None: + out = out.masked_fill(~mask, 0.0) + + return out + + +# rotary positional embedding related + + +def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, theta_rescale_factor=1.0): + # proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning + # has some connection to NTK literature + # https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/ + # https://github.com/lucidrains/rotary-embedding-torch/blob/main/rotary_embedding_torch/rotary_embedding_torch.py + theta *= theta_rescale_factor ** (dim / (dim - 2)) + freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) + t = torch.arange(end, device=freqs.device) # type: ignore + freqs = torch.outer(t, freqs).float() # type: ignore + freqs_cos = torch.cos(freqs) # real part + freqs_sin = torch.sin(freqs) # imaginary part + return torch.cat([freqs_cos, freqs_sin], dim=-1) + + +def get_pos_embed_indices(start, length, max_pos, scale=1.0): + # length = length if isinstance(length, int) else length.max() + scale = scale * torch.ones_like(start, dtype=torch.float32) # in case scale is a scalar + pos = ( + start.unsqueeze(1) + + (torch.arange(length, device=start.device, dtype=torch.float32).unsqueeze(0) * scale.unsqueeze(1)).long() + ) + # avoid extra long error. + pos = torch.where(pos < max_pos, pos, max_pos - 1) + return pos + + +# Global Response Normalization layer (Instance Normalization ?) + + +class GRN(nn.Module): + def __init__(self, dim): + super().__init__() + self.gamma = nn.Parameter(torch.zeros(1, 1, dim)) + self.beta = nn.Parameter(torch.zeros(1, 1, dim)) + + def forward(self, x): + Gx = torch.norm(x, p=2, dim=1, keepdim=True) + Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6) + return self.gamma * (x * Nx) + self.beta + x + + +# ConvNeXt-V2 Block https://github.com/facebookresearch/ConvNeXt-V2/blob/main/models/convnextv2.py +# ref: https://github.com/bfs18/e2_tts/blob/main/rfwave/modules.py#L108 + + +class ConvNeXtV2Block(nn.Module): + def __init__( + self, + dim: int, + intermediate_dim: int, + dilation: int = 1, + ): + super().__init__() + padding = (dilation * (7 - 1)) // 2 + self.dwconv = nn.Conv1d( + dim, dim, kernel_size=7, padding=padding, groups=dim, dilation=dilation + ) # depthwise conv + self.norm = nn.LayerNorm(dim, eps=1e-6) + self.pwconv1 = nn.Linear(dim, intermediate_dim) # pointwise/1x1 convs, implemented with linear layers + self.act = nn.GELU() + self.grn = GRN(intermediate_dim) + self.pwconv2 = nn.Linear(intermediate_dim, dim) + + def forward(self, x: torch.Tensor) -> torch.Tensor: + residual = x + x = x.transpose(1, 2) # b n d -> b d n + x = self.dwconv(x) + x = x.transpose(1, 2) # b d n -> b n d + x = self.norm(x) + x = self.pwconv1(x) + x = self.act(x) + x = self.grn(x) + x = self.pwconv2(x) + return residual + x + + +# AdaLayerNormZero +# return with modulated x for attn input, and params for later mlp modulation + + +class AdaLayerNormZero(nn.Module): + def __init__(self, dim): + super().__init__() + + self.silu = nn.SiLU() + self.linear = nn.Linear(dim, dim * 6) + + self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + + def forward(self, x, emb=None): + emb = self.linear(self.silu(emb)) + shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = torch.chunk(emb, 6, dim=1) + + x = self.norm(x) * (1 + scale_msa[:, None]) + shift_msa[:, None] + return x, gate_msa, shift_mlp, scale_mlp, gate_mlp + + +# AdaLayerNormZero for final layer +# return only with modulated x for attn input, cuz no more mlp modulation + + +class AdaLayerNormZero_Final(nn.Module): + def __init__(self, dim): + super().__init__() + + self.silu = nn.SiLU() + self.linear = nn.Linear(dim, dim * 2) + + self.norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + + def forward(self, x, emb): + emb = self.linear(self.silu(emb)) + scale, shift = torch.chunk(emb, 2, dim=1) + + x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :] + return x + + +# FeedForward + + +class FeedForward(nn.Module): + def __init__(self, dim, dim_out=None, mult=4, dropout=0.0, approximate: str = "none"): + super().__init__() + inner_dim = int(dim * mult) + dim_out = dim_out if dim_out is not None else dim + + activation = nn.GELU(approximate=approximate) + project_in = nn.Sequential(nn.Linear(dim, inner_dim), activation) + self.ff = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) + + def forward(self, x): + return self.ff(x) + + +# Attention with possible joint part +# modified from diffusers/src/diffusers/models/attention_processor.py + + +class Attention(nn.Module): + def __init__( + self, + processor: JointAttnProcessor | AttnProcessor, + dim: int, + heads: int = 8, + dim_head: int = 64, + dropout: float = 0.0, + context_dim: Optional[int] = None, # if not None -> joint attention + context_pre_only=None, + ): + super().__init__() + + if not hasattr(F, "scaled_dot_product_attention"): + raise ImportError("Attention equires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.") + + self.processor = processor + + self.dim = dim + self.heads = heads + self.inner_dim = dim_head * heads + self.dropout = dropout + + self.context_dim = context_dim + self.context_pre_only = context_pre_only + + self.to_q = nn.Linear(dim, self.inner_dim) + self.to_k = nn.Linear(dim, self.inner_dim) + self.to_v = nn.Linear(dim, self.inner_dim) + + if self.context_dim is not None: + self.to_k_c = nn.Linear(context_dim, self.inner_dim) + self.to_v_c = nn.Linear(context_dim, self.inner_dim) + if self.context_pre_only is not None: + self.to_q_c = nn.Linear(context_dim, self.inner_dim) + + self.to_out = nn.ModuleList([]) + self.to_out.append(nn.Linear(self.inner_dim, dim)) + self.to_out.append(nn.Dropout(dropout)) + + if self.context_pre_only is not None and not self.context_pre_only: + self.to_out_c = nn.Linear(self.inner_dim, dim) + + def forward( + self, + x: float["b n d"], # noised input x # noqa: F722 + c: float["b n d"] = None, # context c # noqa: F722 + mask: bool["b n"] | None = None, # noqa: F722 + rope=None, # rotary position embedding for x + c_rope=None, # rotary position embedding for c + ) -> torch.Tensor: + if c is not None: + return self.processor(self, x, c=c, mask=mask, rope=rope, c_rope=c_rope) + else: + return self.processor(self, x, mask=mask, rope=rope) + + +# Attention processor + +from torch.nn.attention import SDPBackend +# torch.backends.cuda.enable_flash_sdp(True) +class AttnProcessor: + def __init__(self): + pass + + def __call__( + self, + attn: Attention, + x: float["b n d"], # noised input x # noqa: F722 + mask: bool["b n"] | None = None, # noqa: F722 + rope=None, # rotary position embedding + ) -> torch.FloatTensor: + batch_size = x.shape[0] + + # `sample` projections. + query = attn.to_q(x) + key = attn.to_k(x) + value = attn.to_v(x) + + # apply rotary position embedding + if rope is not None: + freqs, xpos_scale = rope + q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0) + + query = apply_rotary_pos_emb(query, freqs, q_xpos_scale) + key = apply_rotary_pos_emb(key, freqs, k_xpos_scale) + + # attention + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # mask. e.g. inference got a batch with different target durations, mask out the padding + if mask is not None: + attn_mask = mask + attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n' + # print(3433333333,attn_mask.shape) + attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2]) + else: + attn_mask = None + # with torch.nn.attention.sdpa_kernel(backends=[SDPBackend.EFFICIENT_ATTENTION]): + # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=True): + # with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=True, enable_mem_efficient=False): + # print(torch.backends.cuda.flash_sdp_enabled()) + # print(torch.backends.cuda.mem_efficient_sdp_enabled()) + # print(torch.backends.cuda.math_sdp_enabled()) + x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False) + x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + x = x.to(query.dtype) + + # linear proj + x = attn.to_out[0](x) + # dropout + x = attn.to_out[1](x) + + if mask is not None: + mask = mask.unsqueeze(-1) + x = x.masked_fill(~mask, 0.0) + + return x + + +# Joint Attention processor for MM-DiT +# modified from diffusers/src/diffusers/models/attention_processor.py + + +class JointAttnProcessor: + def __init__(self): + pass + + def __call__( + self, + attn: Attention, + x: float["b n d"], # noised input x # noqa: F722 + c: float["b nt d"] = None, # context c, here text # noqa: F722 + mask: bool["b n"] | None = None, # noqa: F722 + rope=None, # rotary position embedding for x + c_rope=None, # rotary position embedding for c + ) -> torch.FloatTensor: + residual = x + + batch_size = c.shape[0] + + # `sample` projections. + query = attn.to_q(x) + key = attn.to_k(x) + value = attn.to_v(x) + + # `context` projections. + c_query = attn.to_q_c(c) + c_key = attn.to_k_c(c) + c_value = attn.to_v_c(c) + + # apply rope for context and noised input independently + if rope is not None: + freqs, xpos_scale = rope + q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0) + query = apply_rotary_pos_emb(query, freqs, q_xpos_scale) + key = apply_rotary_pos_emb(key, freqs, k_xpos_scale) + if c_rope is not None: + freqs, xpos_scale = c_rope + q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale**-1.0) if xpos_scale is not None else (1.0, 1.0) + c_query = apply_rotary_pos_emb(c_query, freqs, q_xpos_scale) + c_key = apply_rotary_pos_emb(c_key, freqs, k_xpos_scale) + + # attention + query = torch.cat([query, c_query], dim=1) + key = torch.cat([key, c_key], dim=1) + value = torch.cat([value, c_value], dim=1) + + inner_dim = key.shape[-1] + head_dim = inner_dim // attn.heads + query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) + + # mask. e.g. inference got a batch with different target durations, mask out the padding + if mask is not None: + attn_mask = F.pad(mask, (0, c.shape[1]), value=True) # no mask for c (text) + attn_mask = attn_mask.unsqueeze(1).unsqueeze(1) # 'b n -> b 1 1 n' + attn_mask = attn_mask.expand(batch_size, attn.heads, query.shape[-2], key.shape[-2]) + else: + attn_mask = None + + x = F.scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=0.0, is_causal=False) + x = x.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) + x = x.to(query.dtype) + + # Split the attention outputs. + x, c = ( + x[:, : residual.shape[1]], + x[:, residual.shape[1] :], + ) + + # linear proj + x = attn.to_out[0](x) + # dropout + x = attn.to_out[1](x) + if not attn.context_pre_only: + c = attn.to_out_c(c) + + if mask is not None: + mask = mask.unsqueeze(-1) + x = x.masked_fill(~mask, 0.0) + # c = c.masked_fill(~mask, 0.) # no mask for c (text) + + return x, c + + +# DiT Block + +class DiTBlock(nn.Module): + def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1): + super().__init__() + + self.attn_norm = AdaLayerNormZero(dim) + self.attn = Attention( + processor=AttnProcessor(), + dim=dim, + heads=heads, + dim_head=dim_head, + dropout=dropout, + ) + + self.ff_norm = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh") + + def forward(self, x, t, mask=None, rope=None): # x: noised input, t: time embedding + # pre-norm & modulation for attention input + norm, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.attn_norm(x, emb=t) + + # attention + attn_output = self.attn(x=norm, mask=mask, rope=rope) + + # process attention output for input x + x = x + gate_msa.unsqueeze(1) * attn_output + + norm = self.ff_norm(x) * (1 + scale_mlp[:, None]) + shift_mlp[:, None] + ff_output = self.ff(norm) + x = x + gate_mlp.unsqueeze(1) * ff_output + + return x + + +# MMDiT Block https://arxiv.org/abs/2403.03206 + + +class MMDiTBlock(nn.Module): + r""" + modified from diffusers/src/diffusers/models/attention.py + + notes. + _c: context related. text, cond, etc. (left part in sd3 fig2.b) + _x: noised input related. (right part) + context_pre_only: last layer only do prenorm + modulation cuz no more ffn + """ + + def __init__(self, dim, heads, dim_head, ff_mult=4, dropout=0.1, context_pre_only=False): + super().__init__() + + self.context_pre_only = context_pre_only + + self.attn_norm_c = AdaLayerNormZero_Final(dim) if context_pre_only else AdaLayerNormZero(dim) + self.attn_norm_x = AdaLayerNormZero(dim) + self.attn = Attention( + processor=JointAttnProcessor(), + dim=dim, + heads=heads, + dim_head=dim_head, + dropout=dropout, + context_dim=dim, + context_pre_only=context_pre_only, + ) + + if not context_pre_only: + self.ff_norm_c = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff_c = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh") + else: + self.ff_norm_c = None + self.ff_c = None + self.ff_norm_x = nn.LayerNorm(dim, elementwise_affine=False, eps=1e-6) + self.ff_x = FeedForward(dim=dim, mult=ff_mult, dropout=dropout, approximate="tanh") + + def forward(self, x, c, t, mask=None, rope=None, c_rope=None): # x: noised input, c: context, t: time embedding + # pre-norm & modulation for attention input + if self.context_pre_only: + norm_c = self.attn_norm_c(c, t) + else: + norm_c, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = self.attn_norm_c(c, emb=t) + norm_x, x_gate_msa, x_shift_mlp, x_scale_mlp, x_gate_mlp = self.attn_norm_x(x, emb=t) + + # attention + x_attn_output, c_attn_output = self.attn(x=norm_x, c=norm_c, mask=mask, rope=rope, c_rope=c_rope) + + # process attention output for context c + if self.context_pre_only: + c = None + else: # if not last layer + c = c + c_gate_msa.unsqueeze(1) * c_attn_output + + norm_c = self.ff_norm_c(c) * (1 + c_scale_mlp[:, None]) + c_shift_mlp[:, None] + c_ff_output = self.ff_c(norm_c) + c = c + c_gate_mlp.unsqueeze(1) * c_ff_output + + # process attention output for input x + x = x + x_gate_msa.unsqueeze(1) * x_attn_output + + norm_x = self.ff_norm_x(x) * (1 + x_scale_mlp[:, None]) + x_shift_mlp[:, None] + x_ff_output = self.ff_x(norm_x) + x = x + x_gate_mlp.unsqueeze(1) * x_ff_output + + return c, x + + +# time step conditioning embedding + + +class TimestepEmbedding(nn.Module): + def __init__(self, dim, freq_embed_dim=256): + super().__init__() + self.time_embed = SinusPositionEmbedding(freq_embed_dim) + self.time_mlp = nn.Sequential(nn.Linear(freq_embed_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) + + def forward(self, timestep: float["b"]): # noqa: F821 + time_hidden = self.time_embed(timestep) + time_hidden = time_hidden.to(timestep.dtype) + time = self.time_mlp(time_hidden) # b d + return time