CogVideo/sat/README_ja.md

439 lines
16 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# SAT CogVideoX-2B
[Read this in English.](./README_zh)
[中文阅读](./README_zh.md)
このフォルダには、[SAT](https://github.com/THUDM/SwissArmyTransformer) ウェイトを使用した推論コードと、SAT
ウェイトのファインチューニングコードが含まれています。
このコードは、チームがモデルをトレーニングするために使用したフレームワークです。コメントが少なく、注意深く研究する必要があります。
## 推論モデル
### 1. このフォルダに必要な依存関係が正しくインストールされていることを確認してください。
```shell
pip install -r requirements.txt
```
### 2. モデルウェイトをダウンロードします
まず、SAT ミラーに移動してモデルの重みをダウンロードします。 CogVideoX-2B モデルの場合は、次のようにダウンロードしてください。
```shell
mkdir CogVideoX-2b-sat
cd CogVideoX-2b-sat
wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
mv 'index.html?dl=1' vae.zip
unzip vae.zip
wget https://cloud.tsinghua.edu.cn/f/556a3e1329e74f1bac45/?dl=1
mv 'index.html?dl=1' transformer.zip
unzip transformer.zip
```
CogVideoX-5B モデルの `transformers` ファイルを以下のリンクからダウンロードしてください VAE ファイルは 2B と同じです):
+ [CogVideoX-5B](https://cloud.tsinghua.edu.cn/d/fcef5b3904294a6885e5/?p=%2F&mode=list)
+ [CogVideoX-5B-I2V](https://cloud.tsinghua.edu.cn/d/5cc62a2d6e7d45c0a2f6/?p=%2F1&mode=list)
次に、モデルファイルを以下の形式にフォーマットする必要があります:
```
.
├── transformer
│ ├── 1000 (or 1)
│ │ └── mp_rank_00_model_states.pt
│ └── latest
└── vae
└── 3d-vae.pt
```
モデルの重みファイルが大きいため、`git lfs`を使用することをお勧めいたします。`git lfs`
のインストールについては、[こちら](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing)をご参照ください。
```shell
git lfs install
```
次に、T5 モデルをクローンします。これはトレーニングやファインチューニングには使用されませんが、使用する必要があります。
> モデルを複製する際には、[Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b)のモデルファイルの場所もご使用いただけます。
```shell
git clone https://huggingface.co/THUDM/CogVideoX-2b.git #ハギングフェイス(huggingface.org)からモデルをダウンロードいただきます
# git clone https://www.modelscope.cn/ZhipuAI/CogVideoX-2b.git #Modelscopeからモデルをダウンロードいただきます
mkdir t5-v1_1-xxl
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
```
上記の方法に従うことで、safetensor 形式の T5 ファイルを取得できます。これにより、Deepspeed でのファインチューニング中にエラーが発生しないようにします。
```
├── added_tokens.json
├── config.json
├── model-00001-of-00002.safetensors
├── model-00002-of-00002.safetensors
├── model.safetensors.index.json
├── special_tokens_map.json
├── spiece.model
└── tokenizer_config.json
0 directories, 8 files
```
### 3. `configs/cogvideox_2b.yaml` ファイルを変更します。
```yaml
model:
scale_factor: 1.15258426
disable_first_stage_autocast: true
log_keys:
- txt
denoiser_config:
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
params:
num_idx: 1000
quantize_c_noise: False
weighting_config:
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
scaling_config:
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
network_config:
target: dit_video_concat.DiffusionTransformer
params:
time_embed_dim: 512
elementwise_affine: True
num_frames: 49
time_compressed_rate: 4
latent_width: 90
latent_height: 60
num_layers: 30
patch_size: 2
in_channels: 16
out_channels: 16
hidden_size: 1920
adm_in_channels: 256
num_attention_heads: 30
transformer_args:
checkpoint_activations: True ## グラデーション チェックポイントを使用する
vocab_size: 1
max_sequence_length: 64
layernorm_order: pre
skip_init: false
model_parallel_size: 1
is_decoder: false
modules:
pos_embed_config:
target: dit_video_concat.Basic3DPositionEmbeddingMixin
params:
text_length: 226
height_interpolation: 1.875
width_interpolation: 1.875
patch_embed_config:
target: dit_video_concat.ImagePatchEmbeddingMixin
params:
text_hidden_size: 4096
adaln_layer_config:
target: dit_video_concat.AdaLNMixin
params:
qk_ln: True
final_layer_config:
target: dit_video_concat.FinalLayerMixin
conditioner_config:
target: sgm.modules.GeneralConditioner
params:
emb_models:
- is_trainable: false
input_key: txt
ucg_rate: 0.1
target: sgm.modules.encoders.modules.FrozenT5Embedder
params:
model_dir: "t5-v1_1-xxl" # CogVideoX-2b/t5-v1_1-xxlフォルダの絶対パス
max_length: 226
first_stage_config:
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
params:
cp_size: 1
ckpt_path: "CogVideoX-2b-sat/vae/3d-vae.pt" # CogVideoX-2b-sat/vae/3d-vae.ptフォルダの絶対パス
ignore_keys: [ 'loss' ]
loss_config:
target: torch.nn.Identity
regularizer_config:
target: vae_modules.regularizers.DiagonalGaussianRegularizer
encoder_config:
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
params:
double_z: true
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: True
decoder_config:
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
params:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1, 2, 2, 4 ]
attn_resolutions: [ ]
num_res_blocks: 3
dropout: 0.0
gather_norm: False
loss_fn_config:
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
params:
offset_noise_level: 0
sigma_sampler_config:
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
params:
uniform_sampling: True
num_idx: 1000
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
sampler_config:
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
params:
num_steps: 50
verbose: True
discretization_config:
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
params:
shift_scale: 3.0
guider_config:
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
params:
scale: 6
exp: 5
num_steps: 50
```
### 4. `configs/inference.yaml` ファイルを変更します。
```yaml
args:
latent_channels: 16
mode: inference
load: "{absolute_path/to/your}/transformer" # CogVideoX-2b-sat/transformerフォルダの絶対パス
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
batch_size: 1
input_type: txt #TXTのテキストファイルを入力として選択されたり、CLIコマンドラインを入力として変更されたりいただけます
input_file: configs/test.txt #テキストファイルのパスで、これに対して編集がさせていただけます
sampling_num_frames: 13 # Must be 13, 11 or 9
sampling_fps: 8
fp16: True # For CogVideoX-2B
# bf16: True # For CogVideoX-5B
output_dir: outputs/
force_inference: True
```
+ 複数のプロンプトを保存するために txt を使用する場合は、`configs/test.txt`
を参照して変更してください。1行に1つのプロンプトを記述します。プロンプトの書き方がわからない場合は、最初に [このコード](../inference/convert_demo.py)
を使用して LLM によるリファインメントを呼び出すことができます。
+ コマンドラインを入力として使用する場合は、次のように変更します。
```yaml
input_type: cli
```
これにより、コマンドラインからプロンプトを入力できます。
出力ビデオのディレクトリを変更したい場合は、次のように変更できます:
```yaml
output_dir: outputs/
```
デフォルトでは `.outputs/` フォルダに保存されます。
### 5. 推論コードを実行して推論を開始します。
```shell
bash inference.sh
```
## モデルのファインチューニング
### データセットの準備
データセットの形式は次のようになります:
```
.
├── labels
│ ├── 1.txt
│ ├── 2.txt
│ ├── ...
└── videos
├── 1.mp4
├── 2.mp4
├── ...
```
各 txt ファイルは対応するビデオファイルと同じ名前であり、そのビデオのラベルを含んでいます。各ビデオはラベルと一対一で対応する必要があります。通常、1つのビデオに複数のラベルを持たせることはありません。
スタイルファインチューニングの場合、少なくとも50本のスタイルが似たビデオとラベルを準備し、フィッティングを容易にします。
### 設定ファイルの変更
`Lora` とフルパラメータ微調整の2つの方法をサポートしています。両方の微調整方法は、`transformer` 部分のみを微調整し、`VAE`
部分には変更を加えないことに注意してください。`T5` はエンコーダーとしてのみ使用されます。以下のように `configs/sft.yaml` (
フルパラメータ微調整用) ファイルを変更してください。
```
# checkpoint_activations: True ## 勾配チェックポイントを使用する場合 (設定ファイル内の2つの checkpoint_activations を True に設定する必要があります)
model_parallel_size: 1 # モデル並列サイズ
experiment_name: lora-disney # 実験名 (変更しないでください)
mode: finetune # モード (変更しないでください)
load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformer モデルのパス
no_load_rng: True # 乱数シードを読み込むかどうか
train_iters: 1000 # トレーニングイテレーション数
eval_iters: 1 # 評価イテレーション数
eval_interval: 100 # 評価間隔
eval_batch_size: 1 # 評価バッチサイズ
save: ckpts # モデル保存パス
save_interval: 100 # モデル保存間隔
log_interval: 20 # ログ出力間隔
train_data: [ "your train data path" ]
valid_data: [ "your val data path" ] # トレーニングデータと評価データは同じでも構いません
split: 1,0,0 # トレーニングセット、評価セット、テストセットの割合
num_workers: 8 # データローダーのワーカースレッド数
force_train: True # チェックポイントをロードするときに欠落したキーを許可 (T5 と VAE は別々にロードされます)
only_log_video_latents: True # VAE のデコードによるメモリオーバーヘッドを回避
deepspeed:
bf16:
enabled: False # CogVideoX-2B の場合は False に設定し、CogVideoX-5B の場合は True に設定
fp16:
enabled: True # CogVideoX-2B の場合は True に設定し、CogVideoX-5B の場合は False に設定
```
Lora 微調整を使用したい場合は、`cogvideox_<model_parameters>_lora` ファイルも変更する必要があります。
ここでは、`CogVideoX-2B` を参考にします。
```
model:
scale_factor: 1.15258426
disable_first_stage_autocast: true
not_trainable_prefixes: [ 'all' ] ## コメントを解除
log_keys:
- txt'
lora_config: ## コメントを解除
target: sat.model.finetune.lora2.LoraMixin
params:
r: 256
```
### 実行スクリプトの変更
設定ファイルを選択するために `finetune_single_gpu.sh` または `finetune_multi_gpus.sh` を編集します。以下に2つの例を示します。
1. `CogVideoX-2B` モデルを使用し、`Lora` 手法を利用する場合は、`finetune_single_gpu.sh` または `finetune_multi_gpus.sh`
を変更する必要があります。
```
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b_lora.yaml configs/sft.yaml --seed $RANDOM"
```
2. `CogVideoX-2B` モデルを使用し、`フルパラメータ微調整` 手法を利用する場合は、`finetune_single_gpu.sh`
または `finetune_multi_gpus.sh` を変更する必要があります。
```
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b.yaml configs/sft.yaml --seed $RANDOM"
```
### 微調整と評価
推論コードを実行して微調整を開始します。
```
bash finetune_single_gpu.sh # シングルGPU
bash finetune_multi_gpus.sh # マルチGPU
```
### 微調整後のモデルの使用
微調整されたモデルは統合できません。ここでは、推論設定ファイル `inference.sh` を変更する方法を示します。
```
run_cmd="$environs python sample_video.py --base configs/cogvideox_<model_parameters>_lora.yaml configs/inference.yaml --seed 42"
```
その後、次のコードを実行します。
```
bash inference.sh
```
### Huggingface Diffusers サポートのウェイトに変換
SAT ウェイト形式は Huggingface のウェイト形式と異なり、変換が必要です。次のコマンドを実行してください:
```shell
python ../tools/convert_weight_sat2hf.py
```
### SATチェックポイントからHuggingface Diffusers lora LoRAウェイトをエクスポート
上記のステップを完了すると、LoRAウェイト付きのSATチェックポイントが得られます。ファイルは `{args.save}/1000/1000/mp_rank_00_model_states.pt` にあります。
LoRAウェイトをエクスポートするためのスクリプトは、CogVideoXリポジトリの `tools/export_sat_lora_weight.py` にあります。エクスポート後、`load_cogvideox_lora.py` を使用して推論を行うことができます。
エクスポートコマンド:
```bash
python tools/export_sat_lora_weight.py --sat_pt_path {args.save}/{experiment_name}-09-09-21-10/1000/mp_rank_00_model_states.pt --lora_save_directory {args.save}/export_hf_lora_weights_1/
```
このトレーニングでは主に以下のモデル構造が変更されました。以下の表は、HF (Hugging Face) 形式のLoRA構造に変換する際の対応関係を示しています。ご覧の通り、LoRAはモデルの注意メカニズムに低ランクの重みを追加しています。
```
'attention.query_key_value.matrix_A.0': 'attn1.to_q.lora_A.weight',
'attention.query_key_value.matrix_A.1': 'attn1.to_k.lora_A.weight',
'attention.query_key_value.matrix_A.2': 'attn1.to_v.lora_A.weight',
'attention.query_key_value.matrix_B.0': 'attn1.to_q.lora_B.weight',
'attention.query_key_value.matrix_B.1': 'attn1.to_k.lora_B.weight',
'attention.query_key_value.matrix_B.2': 'attn1.to_v.lora_B.weight',
'attention.dense.matrix_A.0': 'attn1.to_out.0.lora_A.weight',
'attention.dense.matrix_B.0': 'attn1.to_out.0.lora_B.weight'
```
export_sat_lora_weight.py を使用して、SATチェックポイントをHF LoRA形式に変換できます。
![alt text](../resources/hf_lora_weights.png)