CogVideo/tools/export_sat_lora_weight.py
2024-09-11 16:24:31 +08:00

84 lines
2.6 KiB
Python

from typing import Any, Dict
import torch
import argparse
from diffusers.loaders.lora_base import LoraBaseMixin
from diffusers.models.modeling_utils import load_state_dict
def get_state_dict(saved_dict: Dict[str, Any]) -> Dict[str, Any]:
state_dict = saved_dict
if "model" in saved_dict.keys():
state_dict = state_dict["model"]
if "module" in saved_dict.keys():
state_dict = state_dict["module"]
if "state_dict" in saved_dict.keys():
state_dict = state_dict["state_dict"]
return state_dict
LORA_KEYS_RENAME = {
'attention.query_key_value.matrix_A.0': 'attn1.to_q.lora_A.weight',
'attention.query_key_value.matrix_A.1': 'attn1.to_k.lora_A.weight',
'attention.query_key_value.matrix_A.2': 'attn1.to_v.lora_A.weight',
'attention.query_key_value.matrix_B.0': 'attn1.to_q.lora_B.weight',
'attention.query_key_value.matrix_B.1': 'attn1.to_k.lora_B.weight',
'attention.query_key_value.matrix_B.2': 'attn1.to_v.lora_B.weight',
'attention.dense.matrix_A.0': 'attn1.to_out.0.lora_A.weight',
'attention.dense.matrix_B.0': 'attn1.to_out.0.lora_B.weight'
}
PREFIX_KEY = "model.diffusion_model."
SAT_UNIT_KEY = "layers"
LORA_PREFIX_KEY = "transformer_blocks"
def export_lora_weight(ckpt_path,lora_save_directory):
merge_original_state_dict = get_state_dict(torch.load(ckpt_path, map_location="cpu", mmap=True))
lora_state_dict = {}
for key in list(merge_original_state_dict.keys()):
new_key = key[len(PREFIX_KEY) :]
for special_key, lora_keys in LORA_KEYS_RENAME.items():
if new_key.endswith(special_key):
new_key = new_key.replace(special_key, lora_keys)
new_key = new_key.replace(SAT_UNIT_KEY, LORA_PREFIX_KEY)
lora_state_dict[new_key] = merge_original_state_dict[key]
# final length should be 240
if len(lora_state_dict) != 240:
raise ValueError("lora_state_dict length is not 240")
lora_state_dict.keys()
LoraBaseMixin.write_lora_layers(
state_dict=lora_state_dict,
save_directory=lora_save_directory,
is_main_process=True,
weight_name=None,
save_function=None,
safe_serialization=True
)
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--sat_pt_path", type=str, required=True, help="Path to original sat transformer checkpoint"
)
parser.add_argument("--lora_save_directory", type=str, required=True, help="Path where converted lora should be saved")
return parser.parse_args()
if __name__ == "__main__":
args = get_args()
export_lora_weight(args.sat_pt_path, args.lora_save_directory)