CogVideo/pretrain_cogvideo.py
2022-07-16 21:52:20 +08:00

185 lines
6.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- encoding: utf-8 -*-
'''
@File : pretrain_cogvideo.py
@Time : 2021/10/06 00:58:32
@Author : Wenyi Hong
@Contact : hwy22@mails.tsinghua.edu.cn
'''
# here put the import lib
import os
import sys
import math
import random
import torch
import argparse
import numpy as np
from icetk import icetk as tokenizer
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
from models.cogvideo_model import CogVideoModel
from SwissArmyTransformer import mpu, get_args
from SwissArmyTransformer.training.deepspeed_training import training_main
from SwissArmyTransformer.data_utils import BinaryDataset
def get_masks_and_position_ids_video(data, attention_mask_totxt=None, args=None):
# Extract batch size and sequence length.
batch_size, seq_length = data.size()
assert attention_mask_totxt is not None
layout = args.layout
assert seq_length == layout[-1]
n_pads = layout[0] - attention_mask_totxt.sum(dim=-1).long()
frame_len = layout[1]-layout[0]
position_ids = torch.zeros(batch_size, layout[2], dtype=torch.long,
device=data.device)
for i in range(batch_size):
torch.arange(layout[0] - n_pads[i], out=position_ids[i, n_pads[i]:layout[0]],
dtype=torch.long, device=data.device)
torch.arange(512, 512+layout[2]-layout[0],
out=position_ids[i, layout[0]:], dtype=torch.long, device=data.device)
return position_ids
def get_batch(data_iterator, args, timers):
# Items and their type.
keys = ['text', 'loss_mask', 'attention_mask_totxt']
datatype = torch.int64
# Broadcast data.
timers('data loader').start()
if data_iterator is not None:
data = next(data_iterator)
else:
data = None
timers('data loader').stop()
data_b = mpu.broadcast_data(keys, data, datatype)
# Unpack.
tokens_ = data_b['text'].long()
loss_mask = data_b['loss_mask'].float()
attention_mask_totxt = data_b['attention_mask_totxt'].float()
labels = tokens_[:, 1:].clone().contiguous()
loss_mask = loss_mask[:, 1:].contiguous()
tokens = tokens_[:, :-1].clone().contiguous()
for idx in range(args.layout[0], args.layout[2], 400):
tokens[:, idx] = tokenizer['<start_of_image>']
# Get the masks and postition ids.
position_ids = get_masks_and_position_ids_video(
tokens,
attention_mask_totxt=attention_mask_totxt,
args=args
)
attention_mask_totxt = attention_mask_totxt.unsqueeze(1).unsqueeze(1)
# Convert
if args.fp16:
attention_mask_totxt = attention_mask_totxt.half()
return tokens, labels, loss_mask, attention_mask_totxt, position_ids
def forward_step(data_iterator, model, args, timers):
"""Forward step."""
# Get the batch.
timers('batch generator').start()
tokens, labels, loss_mask, attention_mask_totxt, position_ids = get_batch(
data_iterator, args, timers)
timers('batch generator').stop()
# Forward model.
logits, *mems = model(tokens, position_ids, attention_mask_totxt)
# ======= hyper params =======#
perframe_len = 400
text_len=64
frame_num = 5
logits_img_tokens = logits[:, text_len:, :tokenizer.num_image_tokens].float().contiguous()
losses = mpu.vocab_parallel_cross_entropy(logits_img_tokens, labels[:, text_len:])
# scaling loss mask
loss_mask = loss_mask[:, text_len:].reshape(-1)
losses_1d = losses.reshape(-1) * loss_mask
loss = torch.sum(losses_1d) / loss_mask.sum()
# ===================== Log partial losses ======================== #
log_loss_dict = {}
bs = losses.shape[0]
if args.cogvideo_stage == 1:
for i in range(frame_num):
log_loss_dict[f'AR_f{i}_loss'] = losses[:, i*perframe_len:(i+1)*perframe_len].contiguous().reshape(-1).detach().sum() / max((perframe_len*bs), 1)
else:
for i in range(1, frame_num-1):
log_loss_dict[f'ITP_f{i}_loss'] = losses[:, i*perframe_len:(i+1)*perframe_len].contiguous().reshape(-1).detach().sum() / max((perframe_len*bs), 1)
# ===================== END OF BLOCK ======================= #
return loss, log_loss_dict
def create_dataset_function(path, args):
dataset_layout = [64, 464, 2064]
input_layout = [64, 464, 2064]
# frame_num = 6
# frame_interval = 2 # DEBUG!!!
def process_fn(row):
row = row.astype(np.int64)
text = row[:dataset_layout[0]]
frames = row[dataset_layout[0]:]
if text[0] == tokenizer['<pad>']:
text = text[1:] # due to our way of data processing
if args.cogvideo_stage == 1:
text, loss_mask, frames = make_text_video_generation(text, frames)
else:
text, loss_mask, frames = mask_video_frame_interpolation(text, frames)
n_pad = input_layout[0] - len(text)
parts = [
np.array([tokenizer['<pad>']] * n_pad, dtype=np.int64),
text,
np.array([tokenizer['<start_of_image>']], dtype=np.int64),
frames,
]
ret = np.concatenate(parts, axis=0)
attention_mask_totxt = np.array([0] * n_pad + [1] * (input_layout[0]-n_pad))
return {'text': ret,
'loss_mask': loss_mask,
'attention_mask_totxt': attention_mask_totxt,
}
return BinaryDataset(path, process_fn, length_per_sample=dataset_layout[-1])
def make_text_video_generation(text, frames):
input_layout = [64, 464, 2064]
text = text[text!= tokenizer['<pad>']][:input_layout[0]] # dataset format: 1.0秒<n>{text}<pad><pad> ...
loss_mask = np.array([0] * (input_layout[1]+1) + [1] * (input_layout[2] - input_layout[1])) # 按照input的之后loss_mask会左移一位
return text, loss_mask, frames
def mask_video_frame_interpolation(text, frames):
input_layout = [64, 464, 2064]
frame_len = input_layout[1]-input_layout[0]
# text format: <pad> 1.0秒 <n> {text} <pad> <pad>
text = text[text!= tokenizer['<pad>']][:input_layout[0]]
loss_mask = np.array([0] * (input_layout[1]+1)
+ [1] * (input_layout[1]-input_layout[0])
+ [0] * (input_layout[1]-input_layout[0])
+ [1] * (input_layout[1]-input_layout[0])
+ [0] * (input_layout[1]-input_layout[0]) )# 按照input的之后loss_mask会左移一位
return text, loss_mask, frames
if __name__ == '__main__':
py_parser = argparse.ArgumentParser(add_help=False)
py_parser.add_argument('--txt-loss-scale', type=float, default=1)
CogVideoModel.add_model_specific_args(py_parser)
known, args_list = py_parser.parse_known_args()
args = get_args(args_list)
args = argparse.Namespace(**vars(args), **vars(known))
args.layout = [int(x) for x in args.layout.split(',')]
training_main(args, model_cls=CogVideoModel, forward_step_function=forward_step, create_dataset_function=create_dataset_function)