mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 11:28:37 +08:00
44 lines
1.3 KiB
Python
44 lines
1.3 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from packaging import version
|
|
|
|
OPENAIUNETWRAPPER = "sgm.modules.diffusionmodules.wrappers.OpenAIWrapper"
|
|
|
|
|
|
class IdentityWrapper(nn.Module):
|
|
def __init__(
|
|
self, diffusion_model, compile_model: bool = False, dtype: torch.dtype = torch.float32
|
|
):
|
|
super().__init__()
|
|
compile = (
|
|
torch.compile
|
|
if (version.parse(torch.__version__) >= version.parse("2.0.0")) and compile_model
|
|
else lambda x: x
|
|
)
|
|
self.diffusion_model = compile(diffusion_model)
|
|
self.dtype = dtype
|
|
|
|
def forward(self, *args, **kwargs):
|
|
return self.diffusion_model(*args, **kwargs)
|
|
|
|
|
|
class OpenAIWrapper(IdentityWrapper):
|
|
def forward(self, x: torch.Tensor, t: torch.Tensor, c: dict, **kwargs) -> torch.Tensor:
|
|
for key in c:
|
|
c[key] = c[key].to(self.dtype)
|
|
|
|
if x.dim() == 4:
|
|
x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=1)
|
|
elif x.dim() == 5:
|
|
x = torch.cat((x, c.get("concat", torch.Tensor([]).type_as(x))), dim=2)
|
|
else:
|
|
raise ValueError("Input tensor must be 4D or 5D")
|
|
|
|
return self.diffusion_model(
|
|
x,
|
|
timesteps=t,
|
|
context=c.get("crossattn", None),
|
|
y=c.get("vector", None),
|
|
**kwargs,
|
|
)
|