mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-06 03:57:56 +08:00
156 lines
5.0 KiB
Python
156 lines
5.0 KiB
Python
import torch
|
|
from scipy import integrate
|
|
|
|
from ...util import append_dims
|
|
from einops import rearrange
|
|
|
|
|
|
class NoDynamicThresholding:
|
|
def __call__(self, uncond, cond, scale):
|
|
scale = append_dims(scale, cond.ndim) if isinstance(scale, torch.Tensor) else scale
|
|
return uncond + scale * (cond - uncond)
|
|
|
|
|
|
class StaticThresholding:
|
|
def __call__(self, uncond, cond, scale):
|
|
result = uncond + scale * (cond - uncond)
|
|
result = torch.clamp(result, min=-1.0, max=1.0)
|
|
return result
|
|
|
|
|
|
def dynamic_threshold(x, p=0.95):
|
|
N, T, C, H, W = x.shape
|
|
x = rearrange(x, "n t c h w -> n c (t h w)")
|
|
l, r = x.quantile(q=torch.tensor([1 - p, p], device=x.device), dim=-1, keepdim=True)
|
|
s = torch.maximum(-l, r)
|
|
threshold_mask = (s > 1).expand(-1, -1, H * W * T)
|
|
if threshold_mask.any():
|
|
x = torch.where(threshold_mask, x.clamp(min=-1 * s, max=s), x)
|
|
x = rearrange(x, "n c (t h w) -> n t c h w", t=T, h=H, w=W)
|
|
return x
|
|
|
|
|
|
def dynamic_thresholding2(x0):
|
|
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
|
origin_dtype = x0.dtype
|
|
x0 = x0.to(torch.float32)
|
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
|
s = append_dims(torch.maximum(s, torch.ones_like(s).to(s.device)), x0.dim())
|
|
x0 = torch.clamp(x0, -s, s) # / s
|
|
return x0.to(origin_dtype)
|
|
|
|
|
|
def latent_dynamic_thresholding(x0):
|
|
p = 0.9995
|
|
origin_dtype = x0.dtype
|
|
x0 = x0.to(torch.float32)
|
|
s = torch.quantile(torch.abs(x0), p, dim=2)
|
|
s = append_dims(s, x0.dim())
|
|
x0 = torch.clamp(x0, -s, s) / s
|
|
return x0.to(origin_dtype)
|
|
|
|
|
|
def dynamic_thresholding3(x0):
|
|
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
|
origin_dtype = x0.dtype
|
|
x0 = x0.to(torch.float32)
|
|
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
|
s = append_dims(torch.maximum(s, torch.ones_like(s).to(s.device)), x0.dim())
|
|
x0 = torch.clamp(x0, -s, s) # / s
|
|
return x0.to(origin_dtype)
|
|
|
|
|
|
class DynamicThresholding:
|
|
def __call__(self, uncond, cond, scale):
|
|
mean = uncond.mean()
|
|
std = uncond.std()
|
|
result = uncond + scale * (cond - uncond)
|
|
result_mean, result_std = result.mean(), result.std()
|
|
result = (result - result_mean) / result_std * std
|
|
# result = dynamic_thresholding3(result)
|
|
return result
|
|
|
|
|
|
class DynamicThresholdingV1:
|
|
def __init__(self, scale_factor):
|
|
self.scale_factor = scale_factor
|
|
|
|
def __call__(self, uncond, cond, scale):
|
|
result = uncond + scale * (cond - uncond)
|
|
unscaled_result = result / self.scale_factor
|
|
B, T, C, H, W = unscaled_result.shape
|
|
flattened = rearrange(unscaled_result, "b t c h w -> b c (t h w)")
|
|
means = flattened.mean(dim=2).unsqueeze(2)
|
|
recentered = flattened - means
|
|
magnitudes = recentered.abs().max()
|
|
normalized = recentered / magnitudes
|
|
thresholded = latent_dynamic_thresholding(normalized)
|
|
denormalized = thresholded * magnitudes
|
|
uncentered = denormalized + means
|
|
unflattened = rearrange(uncentered, "b c (t h w) -> b t c h w", t=T, h=H, w=W)
|
|
scaled_result = unflattened * self.scale_factor
|
|
return scaled_result
|
|
|
|
|
|
class DynamicThresholdingV2:
|
|
def __call__(self, uncond, cond, scale):
|
|
B, T, C, H, W = uncond.shape
|
|
diff = cond - uncond
|
|
mim_target = uncond + diff * 4.0
|
|
cfg_target = uncond + diff * 8.0
|
|
|
|
mim_flattened = rearrange(mim_target, "b t c h w -> b c (t h w)")
|
|
cfg_flattened = rearrange(cfg_target, "b t c h w -> b c (t h w)")
|
|
mim_means = mim_flattened.mean(dim=2).unsqueeze(2)
|
|
cfg_means = cfg_flattened.mean(dim=2).unsqueeze(2)
|
|
mim_centered = mim_flattened - mim_means
|
|
cfg_centered = cfg_flattened - cfg_means
|
|
|
|
mim_scaleref = mim_centered.std(dim=2).unsqueeze(2)
|
|
cfg_scaleref = cfg_centered.std(dim=2).unsqueeze(2)
|
|
|
|
cfg_renormalized = cfg_centered / cfg_scaleref * mim_scaleref
|
|
|
|
result = cfg_renormalized + cfg_means
|
|
unflattened = rearrange(result, "b c (t h w) -> b t c h w", t=T, h=H, w=W)
|
|
|
|
return unflattened
|
|
|
|
|
|
def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
|
|
if order - 1 > i:
|
|
raise ValueError(f"Order {order} too high for step {i}")
|
|
|
|
def fn(tau):
|
|
prod = 1.0
|
|
for k in range(order):
|
|
if j == k:
|
|
continue
|
|
prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
|
|
return prod
|
|
|
|
return integrate.quad(fn, t[i], t[i + 1], epsrel=epsrel)[0]
|
|
|
|
|
|
def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
|
|
if not eta:
|
|
return sigma_to, 0.0
|
|
sigma_up = torch.minimum(
|
|
sigma_to,
|
|
eta * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
|
|
)
|
|
sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
|
|
return sigma_down, sigma_up
|
|
|
|
|
|
def to_d(x, sigma, denoised):
|
|
return (x - denoised) / append_dims(sigma, x.ndim)
|
|
|
|
|
|
def to_neg_log_sigma(sigma):
|
|
return sigma.log().neg()
|
|
|
|
|
|
def to_sigma(neg_log_sigma):
|
|
return neg_log_sigma.neg().exp()
|