CogVideo/sat/sgm/modules/autoencoding/regularizers/lookup_free_quantization.py
Yuxuan Zhang 39c6562dc8 format
2025-03-22 15:14:06 +08:00

316 lines
9.0 KiB
Python

"""
Lookup Free Quantization
Proposed in https://arxiv.org/abs/2310.05737
In the simplest setup, each dimension is quantized into {-1, 1}.
An entropy penalty is used to encourage utilization.
"""
from math import log2, ceil
from collections import namedtuple
import torch
from torch import nn, einsum
import torch.nn.functional as F
from torch.nn import Module
from torch.cuda.amp import autocast
from einops import rearrange, reduce, pack, unpack
# constants
Return = namedtuple("Return", ["quantized", "indices", "entropy_aux_loss"])
LossBreakdown = namedtuple("LossBreakdown", ["per_sample_entropy", "batch_entropy", "commitment"])
# helper functions
def exists(v):
return v is not None
def default(*args):
for arg in args:
if exists(arg):
return arg() if callable(arg) else arg
return None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
# entropy
def log(t, eps=1e-5):
return t.clamp(min=eps).log()
def entropy(prob):
return (-prob * log(prob)).sum(dim=-1)
# class
class LFQ(Module):
def __init__(
self,
*,
dim=None,
codebook_size=None,
entropy_loss_weight=0.1,
commitment_loss_weight=0.25,
diversity_gamma=1.0,
straight_through_activation=nn.Identity(),
num_codebooks=1,
keep_num_codebooks_dim=None,
codebook_scale=1.0, # for residual LFQ, codebook scaled down by 2x at each layer
frac_per_sample_entropy=1.0, # make less than 1. to only use a random fraction of the probs for per sample entropy
):
super().__init__()
# some assert validations
assert exists(dim) or exists(
codebook_size
), "either dim or codebook_size must be specified for LFQ"
assert (
not exists(codebook_size) or log2(codebook_size).is_integer()
), f"your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})"
codebook_size = default(codebook_size, lambda: 2**dim)
codebook_dim = int(log2(codebook_size))
codebook_dims = codebook_dim * num_codebooks
dim = default(dim, codebook_dims)
has_projections = dim != codebook_dims
self.project_in = nn.Linear(dim, codebook_dims) if has_projections else nn.Identity()
self.project_out = nn.Linear(codebook_dims, dim) if has_projections else nn.Identity()
self.has_projections = has_projections
self.dim = dim
self.codebook_dim = codebook_dim
self.num_codebooks = num_codebooks
keep_num_codebooks_dim = default(keep_num_codebooks_dim, num_codebooks > 1)
assert not (num_codebooks > 1 and not keep_num_codebooks_dim)
self.keep_num_codebooks_dim = keep_num_codebooks_dim
# straight through activation
self.activation = straight_through_activation
# entropy aux loss related weights
assert 0 < frac_per_sample_entropy <= 1.0
self.frac_per_sample_entropy = frac_per_sample_entropy
self.diversity_gamma = diversity_gamma
self.entropy_loss_weight = entropy_loss_weight
# codebook scale
self.codebook_scale = codebook_scale
# commitment loss
self.commitment_loss_weight = commitment_loss_weight
# for no auxiliary loss, during inference
self.register_buffer("mask", 2 ** torch.arange(codebook_dim - 1, -1, -1))
self.register_buffer("zero", torch.tensor(0.0), persistent=False)
# codes
all_codes = torch.arange(codebook_size)
bits = ((all_codes[..., None].int() & self.mask) != 0).float()
codebook = self.bits_to_codes(bits)
self.register_buffer("codebook", codebook, persistent=False)
def bits_to_codes(self, bits):
return bits * self.codebook_scale * 2 - self.codebook_scale
@property
def dtype(self):
return self.codebook.dtype
def indices_to_codes(self, indices, project_out=True):
is_img_or_video = indices.ndim >= (3 + int(self.keep_num_codebooks_dim))
if not self.keep_num_codebooks_dim:
indices = rearrange(indices, "... -> ... 1")
# indices to codes, which are bits of either -1 or 1
bits = ((indices[..., None].int() & self.mask) != 0).to(self.dtype)
codes = self.bits_to_codes(bits)
codes = rearrange(codes, "... c d -> ... (c d)")
# whether to project codes out to original dimensions
# if the input feature dimensions were not log2(codebook size)
if project_out:
codes = self.project_out(codes)
# rearrange codes back to original shape
if is_img_or_video:
codes = rearrange(codes, "b ... d -> b d ...")
return codes
@autocast(enabled=False)
def forward(
self,
x,
inv_temperature=100.0,
return_loss_breakdown=False,
mask=None,
):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension, which is also log2(codebook size)
c - number of codebook dim
"""
x = x.float()
is_img_or_video = x.ndim >= 4
# standardize image or video into (batch, seq, dimension)
if is_img_or_video:
x = rearrange(x, "b d ... -> b ... d")
x, ps = pack_one(x, "b * d")
assert (
x.shape[-1] == self.dim
), f"expected dimension of {self.dim} but received {x.shape[-1]}"
x = self.project_in(x)
# split out number of codebooks
x = rearrange(x, "b n (c d) -> b n c d", c=self.num_codebooks)
# quantize by eq 3.
original_input = x
codebook_value = torch.ones_like(x) * self.codebook_scale
quantized = torch.where(x > 0, codebook_value, -codebook_value)
# use straight-through gradients (optionally with custom activation fn) if training
if self.training:
x = self.activation(x)
x = x + (quantized - x).detach()
else:
x = quantized
# calculate indices
indices = reduce((x > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
# entropy aux loss
if self.training:
# the same as euclidean distance up to a constant
distance = -2 * einsum("... i d, j d -> ... i j", original_input, self.codebook)
prob = (-distance * inv_temperature).softmax(dim=-1)
# account for mask
if exists(mask):
prob = prob[mask]
else:
prob = rearrange(prob, "b n ... -> (b n) ...")
# whether to only use a fraction of probs, for reducing memory
if self.frac_per_sample_entropy < 1.0:
num_tokens = prob.shape[0]
num_sampled_tokens = int(num_tokens * self.frac_per_sample_entropy)
rand_mask = torch.randn(num_tokens).argsort(dim=-1) < num_sampled_tokens
per_sample_probs = prob[rand_mask]
else:
per_sample_probs = prob
# calculate per sample entropy
per_sample_entropy = entropy(per_sample_probs).mean()
# distribution over all available tokens in the batch
avg_prob = reduce(per_sample_probs, "... c d -> c d", "mean")
codebook_entropy = entropy(avg_prob).mean()
# 1. entropy will be nudged to be low for each code, to encourage the network to output confident predictions
# 2. codebook entropy will be nudged to be high, to encourage all codes to be uniformly used within the batch
entropy_aux_loss = per_sample_entropy - self.diversity_gamma * codebook_entropy
else:
# if not training, just return dummy 0
entropy_aux_loss = per_sample_entropy = codebook_entropy = self.zero
# commit loss
if self.training:
commit_loss = F.mse_loss(original_input, quantized.detach(), reduction="none")
if exists(mask):
commit_loss = commit_loss[mask]
commit_loss = commit_loss.mean()
else:
commit_loss = self.zero
# merge back codebook dim
x = rearrange(x, "b n c d -> b n (c d)")
# project out to feature dimension if needed
x = self.project_out(x)
# reconstitute image or video dimensions
if is_img_or_video:
x = unpack_one(x, ps, "b * d")
x = rearrange(x, "b ... d -> b d ...")
indices = unpack_one(indices, ps, "b * c")
# whether to remove single codebook dim
if not self.keep_num_codebooks_dim:
indices = rearrange(indices, "... 1 -> ...")
# complete aux loss
aux_loss = (
entropy_aux_loss * self.entropy_loss_weight + commit_loss * self.commitment_loss_weight
)
ret = Return(x, indices, aux_loss)
if not return_loss_breakdown:
return ret
return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss)