mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
137 lines
4.7 KiB
Python
137 lines
4.7 KiB
Python
from .refine import *
|
|
|
|
|
|
def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
|
|
return nn.Sequential(
|
|
torch.nn.ConvTranspose2d(
|
|
in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1
|
|
),
|
|
nn.PReLU(out_planes),
|
|
)
|
|
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias=True,
|
|
),
|
|
nn.PReLU(out_planes),
|
|
)
|
|
|
|
|
|
class IFBlock(nn.Module):
|
|
def __init__(self, in_planes, c=64):
|
|
super(IFBlock, self).__init__()
|
|
self.conv0 = nn.Sequential(
|
|
conv(in_planes, c // 2, 3, 2, 1),
|
|
conv(c // 2, c, 3, 2, 1),
|
|
)
|
|
self.convblock = nn.Sequential(
|
|
conv(c, c),
|
|
conv(c, c),
|
|
conv(c, c),
|
|
conv(c, c),
|
|
conv(c, c),
|
|
conv(c, c),
|
|
conv(c, c),
|
|
conv(c, c),
|
|
)
|
|
self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
|
|
|
|
def forward(self, x, flow, scale):
|
|
if scale != 1:
|
|
x = F.interpolate(x, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
|
|
if flow != None:
|
|
flow = (
|
|
F.interpolate(flow, scale_factor=1.0 / scale, mode="bilinear", align_corners=False)
|
|
* 1.0
|
|
/ scale
|
|
)
|
|
x = torch.cat((x, flow), 1)
|
|
x = self.conv0(x)
|
|
x = self.convblock(x) + x
|
|
tmp = self.lastconv(x)
|
|
tmp = F.interpolate(tmp, scale_factor=scale * 2, mode="bilinear", align_corners=False)
|
|
flow = tmp[:, :4] * scale * 2
|
|
mask = tmp[:, 4:5]
|
|
return flow, mask
|
|
|
|
|
|
class IFNet(nn.Module):
|
|
def __init__(self):
|
|
super(IFNet, self).__init__()
|
|
self.block0 = IFBlock(6, c=240)
|
|
self.block1 = IFBlock(13 + 4, c=150)
|
|
self.block2 = IFBlock(13 + 4, c=90)
|
|
self.block_tea = IFBlock(16 + 4, c=90)
|
|
self.contextnet = Contextnet()
|
|
self.unet = Unet()
|
|
|
|
def forward(self, x, scale=[4, 2, 1], timestep=0.5):
|
|
img0 = x[:, :3]
|
|
img1 = x[:, 3:6]
|
|
gt = x[:, 6:] # In inference time, gt is None
|
|
flow_list = []
|
|
merged = []
|
|
mask_list = []
|
|
warped_img0 = img0
|
|
warped_img1 = img1
|
|
flow = None
|
|
loss_distill = 0
|
|
stu = [self.block0, self.block1, self.block2]
|
|
for i in range(3):
|
|
if flow != None:
|
|
flow_d, mask_d = stu[i](
|
|
torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i]
|
|
)
|
|
flow = flow + flow_d
|
|
mask = mask + mask_d
|
|
else:
|
|
flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
|
|
mask_list.append(torch.sigmoid(mask))
|
|
flow_list.append(flow)
|
|
warped_img0 = warp(img0, flow[:, :2])
|
|
warped_img1 = warp(img1, flow[:, 2:4])
|
|
merged_student = (warped_img0, warped_img1)
|
|
merged.append(merged_student)
|
|
if gt.shape[1] == 3:
|
|
flow_d, mask_d = self.block_tea(
|
|
torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1
|
|
)
|
|
flow_teacher = flow + flow_d
|
|
warped_img0_teacher = warp(img0, flow_teacher[:, :2])
|
|
warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
|
|
mask_teacher = torch.sigmoid(mask + mask_d)
|
|
merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (
|
|
1 - mask_teacher
|
|
)
|
|
else:
|
|
flow_teacher = None
|
|
merged_teacher = None
|
|
for i in range(3):
|
|
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
|
if gt.shape[1] == 3:
|
|
loss_mask = (
|
|
(
|
|
(merged[i] - gt).abs().mean(1, True)
|
|
> (merged_teacher - gt).abs().mean(1, True) + 0.01
|
|
)
|
|
.float()
|
|
.detach()
|
|
)
|
|
loss_distill += (
|
|
((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask
|
|
).mean()
|
|
c0 = self.contextnet(img0, flow[:, :2])
|
|
c1 = self.contextnet(img1, flow[:, 2:4])
|
|
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
|
res = tmp[:, :3] * 2 - 1
|
|
merged[2] = torch.clamp(merged[2] + res, 0, 1)
|
|
return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
|