mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
80 lines
2.9 KiB
Python
80 lines
2.9 KiB
Python
import logging
|
|
import random
|
|
|
|
from torch.utils.data import Dataset, Sampler
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class BucketSampler(Sampler):
|
|
r"""
|
|
PyTorch Sampler that groups 3D data by height, width and frames.
|
|
|
|
Args:
|
|
data_source (`VideoDataset`):
|
|
A PyTorch dataset object that is an instance of `VideoDataset`.
|
|
batch_size (`int`, defaults to `8`):
|
|
The batch size to use for training.
|
|
shuffle (`bool`, defaults to `True`):
|
|
Whether or not to shuffle the data in each batch before dispatching to dataloader.
|
|
drop_last (`bool`, defaults to `False`):
|
|
Whether or not to drop incomplete buckets of data after completely iterating over all data
|
|
in the dataset. If set to True, only batches that have `batch_size` number of entries will
|
|
be yielded. If set to False, it is guaranteed that all data in the dataset will be processed
|
|
and batches that do not have `batch_size` number of entries will also be yielded.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
data_source: Dataset,
|
|
batch_size: int = 8,
|
|
shuffle: bool = True,
|
|
drop_last: bool = False,
|
|
) -> None:
|
|
self.data_source = data_source
|
|
self.batch_size = batch_size
|
|
self.shuffle = shuffle
|
|
self.drop_last = drop_last
|
|
|
|
self.buckets = {resolution: [] for resolution in data_source.video_resolution_buckets}
|
|
|
|
self._raised_warning_for_drop_last = False
|
|
|
|
def __len__(self):
|
|
if self.drop_last and not self._raised_warning_for_drop_last:
|
|
self._raised_warning_for_drop_last = True
|
|
logger.warning(
|
|
"Calculating the length for bucket sampler is not possible when `drop_last` is set to True. This may cause problems when setting the number of epochs used for training."
|
|
)
|
|
return (len(self.data_source) + self.batch_size - 1) // self.batch_size
|
|
|
|
def __iter__(self):
|
|
for index, data in enumerate(self.data_source):
|
|
video_metadata = data["video_metadata"]
|
|
f, h, w = (
|
|
video_metadata["num_frames"],
|
|
video_metadata["height"],
|
|
video_metadata["width"],
|
|
)
|
|
|
|
self.buckets[(f, h, w)].append(data)
|
|
if len(self.buckets[(f, h, w)]) == self.batch_size:
|
|
if self.shuffle:
|
|
random.shuffle(self.buckets[(f, h, w)])
|
|
yield self.buckets[(f, h, w)]
|
|
del self.buckets[(f, h, w)]
|
|
self.buckets[(f, h, w)] = []
|
|
|
|
if self.drop_last:
|
|
return
|
|
|
|
for fhw, bucket in list(self.buckets.items()):
|
|
if len(bucket) == 0:
|
|
continue
|
|
if self.shuffle:
|
|
random.shuffle(bucket)
|
|
yield bucket
|
|
del self.buckets[fhw]
|
|
self.buckets[fhw] = []
|