mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
When loading videos with fewer frames than max_num_frames, repeat the last frame to reach the required length instead of failing. This ensures consistent tensor dimensions across the dataset while preserving as much original video content as possible.
189 lines
6.3 KiB
Python
189 lines
6.3 KiB
Python
import logging
|
|
from pathlib import Path
|
|
from typing import List, Tuple
|
|
|
|
import cv2
|
|
import torch
|
|
from torchvision.transforms.functional import resize
|
|
|
|
|
|
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
|
|
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
|
import decord # isort:skip
|
|
|
|
decord.bridge.set_bridge("torch")
|
|
|
|
|
|
########## loaders ##########
|
|
|
|
|
|
def load_prompts(prompt_path: Path) -> List[str]:
|
|
with open(prompt_path, "r", encoding="utf-8") as file:
|
|
return [line.strip() for line in file.readlines() if len(line.strip()) > 0]
|
|
|
|
|
|
def load_videos(video_path: Path) -> List[Path]:
|
|
with open(video_path, "r", encoding="utf-8") as file:
|
|
return [video_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]
|
|
|
|
|
|
def load_images(image_path: Path) -> List[Path]:
|
|
with open(image_path, "r", encoding="utf-8") as file:
|
|
return [image_path.parent / line.strip() for line in file.readlines() if len(line.strip()) > 0]
|
|
|
|
|
|
def load_images_from_videos(videos_path: List[Path]) -> List[Path]:
|
|
first_frames_dir = videos_path[0].parent.parent / "first_frames"
|
|
first_frames_dir.mkdir(exist_ok=True)
|
|
|
|
first_frame_paths = []
|
|
for video_path in videos_path:
|
|
frame_path = first_frames_dir / f"{video_path.stem}.png"
|
|
if frame_path.exists():
|
|
first_frame_paths.append(frame_path)
|
|
continue
|
|
|
|
# Open video
|
|
cap = cv2.VideoCapture(str(video_path))
|
|
|
|
# Read first frame
|
|
ret, frame = cap.read()
|
|
if not ret:
|
|
raise RuntimeError(f"Failed to read video: {video_path}")
|
|
|
|
# Save frame as PNG with same name as video
|
|
cv2.imwrite(str(frame_path), frame)
|
|
logging.info(f"Saved first frame to {frame_path}")
|
|
|
|
# Release video capture
|
|
cap.release()
|
|
|
|
first_frame_paths.append(frame_path)
|
|
|
|
return first_frame_paths
|
|
|
|
|
|
########## preprocessors ##########
|
|
|
|
|
|
def preprocess_image_with_resize(
|
|
image_path: Path | str,
|
|
height: int,
|
|
width: int,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Loads and resizes a single image.
|
|
|
|
Args:
|
|
image_path: Path to the image file.
|
|
height: Target height for resizing.
|
|
width: Target width for resizing.
|
|
|
|
Returns:
|
|
torch.Tensor: Image tensor with shape [C, H, W] where:
|
|
C = number of channels (3 for RGB)
|
|
H = height
|
|
W = width
|
|
"""
|
|
if isinstance(image_path, str):
|
|
image_path = Path(image_path)
|
|
image = cv2.imread(image_path.as_posix())
|
|
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
|
image = cv2.resize(image, (width, height))
|
|
image = torch.from_numpy(image).float()
|
|
image = image.permute(2, 0, 1).contiguous()
|
|
return image
|
|
|
|
|
|
def preprocess_video_with_resize(
|
|
video_path: Path | str,
|
|
max_num_frames: int,
|
|
height: int,
|
|
width: int,
|
|
) -> torch.Tensor:
|
|
"""
|
|
Loads and resizes a single video.
|
|
|
|
The function processes the video through these steps:
|
|
1. If video frame count > max_num_frames, downsample frames evenly
|
|
2. If video dimensions don't match (height, width), resize frames
|
|
|
|
Args:
|
|
video_path: Path to the video file.
|
|
max_num_frames: Maximum number of frames to keep.
|
|
height: Target height for resizing.
|
|
width: Target width for resizing.
|
|
|
|
Returns:
|
|
A torch.Tensor with shape [F, C, H, W] where:
|
|
F = number of frames
|
|
C = number of channels (3 for RGB)
|
|
H = height
|
|
W = width
|
|
"""
|
|
if isinstance(video_path, str):
|
|
video_path = Path(video_path)
|
|
video_reader = decord.VideoReader(uri=video_path.as_posix(), width=width, height=height)
|
|
video_num_frames = len(video_reader)
|
|
if video_num_frames < max_num_frames:
|
|
# Get all frames first
|
|
frames = video_reader.get_batch(list(range(video_num_frames)))
|
|
# Repeat the last frame until we reach max_num_frames
|
|
last_frame = frames[-1:]
|
|
num_repeats = max_num_frames - video_num_frames
|
|
repeated_frames = last_frame.repeat(num_repeats, 1, 1, 1)
|
|
frames = torch.cat([frames, repeated_frames], dim=0)
|
|
return frames.float().permute(0, 3, 1, 2).contiguous()
|
|
else:
|
|
indices = list(range(0, video_num_frames, video_num_frames // max_num_frames))
|
|
frames = video_reader.get_batch(indices)
|
|
frames = frames[:max_num_frames].float()
|
|
frames = frames.permute(0, 3, 1, 2).contiguous()
|
|
return frames
|
|
|
|
|
|
def preprocess_video_with_buckets(
|
|
video_path: Path,
|
|
resolution_buckets: List[Tuple[int, int, int]],
|
|
) -> torch.Tensor:
|
|
"""
|
|
Args:
|
|
video_path: Path to the video file.
|
|
resolution_buckets: List of tuples (num_frames, height, width) representing
|
|
available resolution buckets.
|
|
|
|
Returns:
|
|
torch.Tensor: Video tensor with shape [F, C, H, W] where:
|
|
F = number of frames
|
|
C = number of channels (3 for RGB)
|
|
H = height
|
|
W = width
|
|
|
|
The function processes the video through these steps:
|
|
1. Finds nearest frame bucket <= video frame count
|
|
2. Downsamples frames evenly to match bucket size
|
|
3. Finds nearest resolution bucket based on dimensions
|
|
4. Resizes frames to match bucket resolution
|
|
"""
|
|
video_reader = decord.VideoReader(uri=video_path.as_posix())
|
|
video_num_frames = len(video_reader)
|
|
resolution_buckets = [bucket for bucket in resolution_buckets if bucket[0] <= video_num_frames]
|
|
if len(resolution_buckets) == 0:
|
|
raise ValueError(f"video frame count in {video_path} is less than all frame buckets {resolution_buckets}")
|
|
|
|
nearest_frame_bucket = min(
|
|
resolution_buckets,
|
|
key=lambda bucket: video_num_frames - bucket[0],
|
|
default=1,
|
|
)[0]
|
|
frame_indices = list(range(0, video_num_frames, video_num_frames // nearest_frame_bucket))
|
|
frames = video_reader.get_batch(frame_indices)
|
|
frames = frames[:nearest_frame_bucket].float()
|
|
frames = frames.permute(0, 3, 1, 2).contiguous()
|
|
|
|
nearest_res = min(resolution_buckets, key=lambda x: abs(x[1] - frames.shape[2]) + abs(x[2] - frames.shape[3]))
|
|
nearest_res = (nearest_res[1], nearest_res[2])
|
|
frames = torch.stack([resize(f, nearest_res) for f in frames], dim=0)
|
|
|
|
return frames
|