mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
312 lines
12 KiB
Python
312 lines
12 KiB
Python
import hashlib
|
|
from pathlib import Path
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Tuple
|
|
|
|
import torch
|
|
from accelerate.logging import get_logger
|
|
from safetensors.torch import load_file, save_file
|
|
from torch.utils.data import Dataset
|
|
from torchvision import transforms
|
|
from typing_extensions import override
|
|
|
|
from finetune.constants import LOG_LEVEL, LOG_NAME
|
|
|
|
from .utils import (
|
|
load_images,
|
|
load_images_from_videos,
|
|
load_prompts,
|
|
load_videos,
|
|
preprocess_image_with_resize,
|
|
preprocess_video_with_buckets,
|
|
preprocess_video_with_resize,
|
|
)
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from finetune.trainer import Trainer
|
|
|
|
# Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error
|
|
# Very few bug reports but it happens. Look in decord Github issues for more relevant information.
|
|
import decord # isort:skip
|
|
|
|
decord.bridge.set_bridge("torch")
|
|
|
|
logger = get_logger(LOG_NAME, LOG_LEVEL)
|
|
|
|
|
|
class BaseI2VDataset(Dataset):
|
|
"""
|
|
Base dataset class for Image-to-Video (I2V) training.
|
|
|
|
This dataset loads prompts, videos and corresponding conditioning images for I2V training.
|
|
|
|
Args:
|
|
data_root (str): Root directory containing the dataset files
|
|
caption_column (str): Path to file containing text prompts/captions
|
|
video_column (str): Path to file containing video paths
|
|
image_column (str): Path to file containing image paths
|
|
device (torch.device): Device to load the data on
|
|
encode_video_fn (Callable[[torch.Tensor], torch.Tensor], optional): Function to encode videos
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
data_root: str,
|
|
caption_column: str,
|
|
video_column: str,
|
|
image_column: str | None,
|
|
device: torch.device,
|
|
trainer: "Trainer" = None,
|
|
*args,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
data_root = Path(data_root)
|
|
self.prompts = load_prompts(data_root / caption_column)
|
|
self.videos = load_videos(data_root / video_column)
|
|
if image_column is not None:
|
|
self.images = load_images(data_root / image_column)
|
|
else:
|
|
self.images = load_images_from_videos(self.videos)
|
|
self.trainer = trainer
|
|
|
|
self.device = device
|
|
self.encode_video = trainer.encode_video
|
|
self.encode_text = trainer.encode_text
|
|
|
|
# Check if number of prompts matches number of videos and images
|
|
if not (len(self.videos) == len(self.prompts) == len(self.images)):
|
|
raise ValueError(
|
|
f"Expected length of prompts, videos and images to be the same but found {len(self.prompts)=}, {len(self.videos)=} and {len(self.images)=}. Please ensure that the number of caption prompts, videos and images match in your dataset."
|
|
)
|
|
|
|
# Check if all video files exist
|
|
if any(not path.is_file() for path in self.videos):
|
|
raise ValueError(
|
|
f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}"
|
|
)
|
|
|
|
# Check if all image files exist
|
|
if any(not path.is_file() for path in self.images):
|
|
raise ValueError(
|
|
f"Some image files were not found. Please ensure that all image files exist in the dataset directory. Missing file: {next(path for path in self.images if not path.is_file())}"
|
|
)
|
|
|
|
def __len__(self) -> int:
|
|
return len(self.videos)
|
|
|
|
def __getitem__(self, index: int) -> Dict[str, Any]:
|
|
if isinstance(index, list):
|
|
# Here, index is actually a list of data objects that we need to return.
|
|
# The BucketSampler should ideally return indices. But, in the sampler, we'd like
|
|
# to have information about num_frames, height and width. Since this is not stored
|
|
# as metadata, we need to read the video to get this information. You could read this
|
|
# information without loading the full video in memory, but we do it anyway. In order
|
|
# to not load the video twice (once to get the metadata, and once to return the loaded video
|
|
# based on sampled indices), we cache it in the BucketSampler. When the sampler is
|
|
# to yield, we yield the cache data instead of indices. So, this special check ensures
|
|
# that data is not loaded a second time. PRs are welcome for improvements.
|
|
return index
|
|
|
|
prompt = self.prompts[index]
|
|
video = self.videos[index]
|
|
image = self.images[index]
|
|
train_resolution_str = "x".join(str(x) for x in self.trainer.args.train_resolution)
|
|
|
|
cache_dir = self.trainer.args.data_root / "cache"
|
|
video_latent_dir = cache_dir / "video_latent" / self.trainer.args.model_name / train_resolution_str
|
|
prompt_embeddings_dir = cache_dir / "prompt_embeddings"
|
|
video_latent_dir.mkdir(parents=True, exist_ok=True)
|
|
prompt_embeddings_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
prompt_hash = str(hashlib.sha256(prompt.encode()).hexdigest())
|
|
prompt_embedding_path = prompt_embeddings_dir / (prompt_hash + ".safetensors")
|
|
encoded_video_path = video_latent_dir / (video.stem + ".safetensors")
|
|
|
|
if prompt_embedding_path.exists():
|
|
prompt_embedding = load_file(prompt_embedding_path)["prompt_embedding"]
|
|
logger.debug(
|
|
f"process {self.trainer.accelerator.process_index}: Loaded prompt embedding from {prompt_embedding_path}",
|
|
main_process_only=False,
|
|
)
|
|
else:
|
|
prompt_embedding = self.encode_text(prompt)
|
|
prompt_embedding = prompt_embedding.to("cpu")
|
|
# [1, seq_len, hidden_size] -> [seq_len, hidden_size]
|
|
prompt_embedding = prompt_embedding[0]
|
|
save_file({"prompt_embedding": prompt_embedding}, prompt_embedding_path)
|
|
logger.info(f"Saved prompt embedding to {prompt_embedding_path}", main_process_only=False)
|
|
|
|
if encoded_video_path.exists():
|
|
encoded_video = load_file(encoded_video_path)["encoded_video"]
|
|
logger.debug(f"Loaded encoded video from {encoded_video_path}", main_process_only=False)
|
|
# shape of image: [C, H, W]
|
|
_, image = self.preprocess(None, self.images[index])
|
|
image = self.image_transform(image)
|
|
else:
|
|
frames, image = self.preprocess(video, image)
|
|
frames = frames.to(self.device)
|
|
image = image.to(self.device)
|
|
image = self.image_transform(image)
|
|
# Current shape of frames: [F, C, H, W]
|
|
frames = self.video_transform(frames)
|
|
|
|
# Convert to [B, C, F, H, W]
|
|
frames = frames.unsqueeze(0)
|
|
frames = frames.permute(0, 2, 1, 3, 4).contiguous()
|
|
encoded_video = self.encode_video(frames)
|
|
|
|
# [1, C, F, H, W] -> [C, F, H, W]
|
|
encoded_video = encoded_video[0]
|
|
encoded_video = encoded_video.to("cpu")
|
|
image = image.to("cpu")
|
|
save_file({"encoded_video": encoded_video}, encoded_video_path)
|
|
logger.info(f"Saved encoded video to {encoded_video_path}", main_process_only=False)
|
|
|
|
# shape of encoded_video: [C, F, H, W]
|
|
# shape of image: [C, H, W]
|
|
return {
|
|
"image": image,
|
|
"prompt_embedding": prompt_embedding,
|
|
"encoded_video": encoded_video,
|
|
"video_metadata": {
|
|
"num_frames": encoded_video.shape[1],
|
|
"height": encoded_video.shape[2],
|
|
"width": encoded_video.shape[3],
|
|
},
|
|
}
|
|
|
|
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
"""
|
|
Loads and preprocesses a video and an image.
|
|
If either path is None, no preprocessing will be done for that input.
|
|
|
|
Args:
|
|
video_path: Path to the video file to load
|
|
image_path: Path to the image file to load
|
|
|
|
Returns:
|
|
A tuple containing:
|
|
- video(torch.Tensor) of shape [F, C, H, W] where F is number of frames,
|
|
C is number of channels, H is height and W is width
|
|
- image(torch.Tensor) of shape [C, H, W]
|
|
"""
|
|
raise NotImplementedError("Subclass must implement this method")
|
|
|
|
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Applies transformations to a video.
|
|
|
|
Args:
|
|
frames (torch.Tensor): A 4D tensor representing a video
|
|
with shape [F, C, H, W] where:
|
|
- F is number of frames
|
|
- C is number of channels (3 for RGB)
|
|
- H is height
|
|
- W is width
|
|
|
|
Returns:
|
|
torch.Tensor: The transformed video tensor
|
|
"""
|
|
raise NotImplementedError("Subclass must implement this method")
|
|
|
|
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
|
|
"""
|
|
Applies transformations to an image.
|
|
|
|
Args:
|
|
image (torch.Tensor): A 3D tensor representing an image
|
|
with shape [C, H, W] where:
|
|
- C is number of channels (3 for RGB)
|
|
- H is height
|
|
- W is width
|
|
|
|
Returns:
|
|
torch.Tensor: The transformed image tensor
|
|
"""
|
|
raise NotImplementedError("Subclass must implement this method")
|
|
|
|
|
|
class I2VDatasetWithResize(BaseI2VDataset):
|
|
"""
|
|
A dataset class for image-to-video generation that resizes inputs to fixed dimensions.
|
|
|
|
This class preprocesses videos and images by resizing them to specified dimensions:
|
|
- Videos are resized to max_num_frames x height x width
|
|
- Images are resized to height x width
|
|
|
|
Args:
|
|
max_num_frames (int): Maximum number of frames to extract from videos
|
|
height (int): Target height for resizing videos and images
|
|
width (int): Target width for resizing videos and images
|
|
"""
|
|
|
|
def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.max_num_frames = max_num_frames
|
|
self.height = height
|
|
self.width = width
|
|
|
|
self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])
|
|
self.__image_transforms = self.__frame_transforms
|
|
|
|
@override
|
|
def preprocess(self, video_path: Path | None, image_path: Path | None) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
if video_path is not None:
|
|
video = preprocess_video_with_resize(video_path, self.max_num_frames, self.height, self.width)
|
|
else:
|
|
video = None
|
|
if image_path is not None:
|
|
image = preprocess_image_with_resize(image_path, self.height, self.width)
|
|
else:
|
|
image = None
|
|
return video, image
|
|
|
|
@override
|
|
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
|
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
|
|
|
|
@override
|
|
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
|
|
return self.__image_transforms(image)
|
|
|
|
|
|
class I2VDatasetWithBuckets(BaseI2VDataset):
|
|
def __init__(
|
|
self,
|
|
video_resolution_buckets: List[Tuple[int, int, int]],
|
|
vae_temporal_compression_ratio: int,
|
|
vae_height_compression_ratio: int,
|
|
vae_width_compression_ratio: int,
|
|
*args,
|
|
**kwargs,
|
|
) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self.video_resolution_buckets = [
|
|
(
|
|
int(b[0] / vae_temporal_compression_ratio),
|
|
int(b[1] / vae_height_compression_ratio),
|
|
int(b[2] / vae_width_compression_ratio),
|
|
)
|
|
for b in video_resolution_buckets
|
|
]
|
|
self.__frame_transforms = transforms.Compose([transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)])
|
|
self.__image_transforms = self.__frame_transforms
|
|
|
|
@override
|
|
def preprocess(self, video_path: Path, image_path: Path) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
video = preprocess_video_with_buckets(video_path, self.video_resolution_buckets)
|
|
image = preprocess_image_with_resize(image_path, video.shape[2], video.shape[3])
|
|
return video, image
|
|
|
|
@override
|
|
def video_transform(self, frames: torch.Tensor) -> torch.Tensor:
|
|
return torch.stack([self.__frame_transforms(f) for f in frames], dim=0)
|
|
|
|
@override
|
|
def image_transform(self, image: torch.Tensor) -> torch.Tensor:
|
|
return self.__image_transforms(image)
|