CogVideo/inference/test_upscale.py
glide-the 957a210a72 feat: Add upscale model integration Add EIFE integration、 batch processing for video frames
- Integrated progress tracking with upscale model loading.
- Implemented conditional latent upscaling using the upscale model.
- Processed batch video frames using PyTorch and converted them to PIL images.
- load_torch_file for params_ema convert weights
2024-08-24 15:55:35 +08:00

29 lines
794 B
Python

import utils
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_sd_upscale(ckpt):
from spandrel import ModelLoader, ImageModelDescriptor # Simulate a step in loading
pbar = utils.ProgressBar(1, desc="Loading upscale model")
sd = utils.load_torch_file(ckpt, device=device)
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
sd = utils.state_dict_prefix_replace(sd, {"module.": ""})
out = ModelLoader().load_from_state_dict(sd).half()
pbar.update(1) # Update progress by 1
return out
def test_load_sd_upscale():
model = load_sd_upscale("/media/gpt4-pdf-chatbot-langchain/ComfyUI/models/upscale_models/RealESRNet_x4plus.pth")
print(model.dtype)
if __name__ == "__main__":
test_load_sd_upscale()