glide-the 857e858aa8 Add upscale model integration EIFE integration and batch processing for video frames
- Integrated progress tracking with upscale model loading.
- Implemented conditional latent upscaling using the upscale model.
- Processed batch video frames using PyTorch and converted them to PIL images.
- load_torch_file for params_ema convert weights
2024-08-24 16:42:16 +08:00

16 lines
480 B
Python

import utils
import torch
from inference.gradio_composite_demo.rife_model import load_rife_model, rife_inference_with_path
device = "cuda" if torch.cuda.is_available() else "cpu"
if __name__ == "__main__":
model_path = "/media/gpt4-pdf-chatbot-langchain/ECCV2022-RIFE/train_log"
# video_path = "/media/gpt4-pdf-chatbot-langchain/CogVideo/inference/output/20240823_110325.mp4"
model = load_rife_model(model_path)
# rife_inference_with_path(model, video_path)