2024-08-20 21:21:10 +08:00
..
2024-08-19 16:47:51 +08:00
2024-08-13 20:09:56 +08:00
2024-08-06 18:50:03 +08:00
2024-08-06 02:12:51 +08:00
2024-08-13 11:11:29 +08:00
2024-08-06 03:45:31 +08:00
2024-08-14 22:09:03 +08:00
2024-08-19 16:47:51 +08:00
2024-08-19 16:47:51 +08:00
2024-08-19 16:47:51 +08:00
2024-08-19 16:47:51 +08:00
2024-08-19 16:47:51 +08:00
2024-08-19 16:47:51 +08:00
2024-08-15 13:28:50 +08:00
2024-08-06 18:50:03 +08:00
2024-08-06 02:12:51 +08:00

SAT CogVideoX-2B

中文阅读

日本語で読む

This folder contains the inference code using SAT weights and the fine-tuning code for SAT weights.

This code is the framework used by the team to train the model. It has few comments and requires careful study.

Inference Model

  1. Ensure that you have correctly installed the dependencies required by this folder.
pip install -r requirements.txt
  1. Download the model weights

First, go to the SAT mirror to download the dependencies.

mkdir CogVideoX-2b-sat
cd CogVideoX-2b-sat
wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
mv 'index.html?dl=1' vae.zip
unzip vae.zip
wget https://cloud.tsinghua.edu.cn/f/556a3e1329e74f1bac45/?dl=1
mv 'index.html?dl=1' transformer.zip
unzip transformer.zip

Then unzip, the model structure should look like this:

.
├── transformer
│   ├── 1000
│   │   └── mp_rank_00_model_states.pt
│   └── latest
└── vae
    └── 3d-vae.pt

Next, clone the T5 model, which is not used for training and fine-tuning, but must be used.

git clone https://huggingface.co/THUDM/CogVideoX-2b.git
mkdir t5-v1_1-xxl
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl

By following the above approach, you will obtain a safetensor format T5 file. Ensure that there are no errors when loading it into Deepspeed in Finetune.

├── added_tokens.json
├── config.json
├── model-00001-of-00002.safetensors
├── model-00002-of-00002.safetensors
├── model.safetensors.index.json
├── special_tokens_map.json
├── spiece.model
└── tokenizer_config.json

0 directories, 8 files

Each text file shares the same name as its corresponding video, serving as the label for that video. Videos and labels should be matched one-to-one. Generally, a single video should not be associated with multiple labels.

For style fine-tuning, please prepare at least 50 videos and labels with similar styles to ensure proper fitting.

Modifying Configuration Files

We support two fine-tuning methods: Lora and full-parameter fine-tuning. Please note that both methods only fine-tune the transformer part and do not modify the VAE section. T5 is used solely as an Encoder. Please modify the configs/sft.yaml (for full-parameter fine-tuning) file as follows:

  # checkpoint_activations: True ## Using gradient checkpointing (Both checkpoint_activations in the config file need to be set to True)
  model_parallel_size: 1 # Model parallel size
  experiment_name: lora-disney  # Experiment name (do not modify)
  mode: finetune # Mode (do not modify)
  load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformer model path
  no_load_rng: True # Whether to load random seed
  train_iters: 1000 # Training iterations
  eval_iters: 1 # Evaluation iterations
  eval_interval: 100    # Evaluation interval
  eval_batch_size: 1  # Evaluation batch size
  save: ckpts # Model save path
  save_interval: 100 # Model save interval
  log_interval: 20 # Log output interval
  train_data: [ "your train data path" ]
  valid_data: [ "your val data path" ] # Training and validation datasets can be the same
  split: 1,0,0 # Training, validation, and test set ratio
  num_workers: 8 # Number of worker threads for data loader
  force_train: True # Allow missing keys when loading checkpoint (T5 and VAE are loaded separately)
  only_log_video_latents: True # Avoid memory overhead caused by VAE decode
  deepspeed:
    bf16:
      enabled: False # For CogVideoX-2B set to False and for CogVideoX-5B set to True
    fp16:
      enabled: True  # For CogVideoX-2B set to True and for CogVideoX-5B set to False

If you wish to use Lora fine-tuning, you also need to modify the cogvideox_<model_parameters>_lora file:

Here, take CogVideoX-2B as a reference:

model:
  scale_factor: 1.15258426
  disable_first_stage_autocast: true
  not_trainable_prefixes: [ 'all' ] ## Uncomment
  log_keys:
    - txt'

  lora_config: ## Uncomment
    target: sat.model.finetune.lora2.LoraMixin
    params:
      r: 256

Modifying Run Scripts

Edit finetune_single_gpu.sh or finetune_multi_gpus.sh to select the configuration file. Below are two examples:

  1. If you want to use the CogVideoX-2B model and the Lora method, you need to modify finetune_single_gpu.sh or finetune_multi_gpus.sh:
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b_lora.yaml configs/sft.yaml --seed $RANDOM"
  1. If you want to use the CogVideoX-2B model and the full-parameter fine-tuning method, you need to modify finetune_single_gpu.sh or finetune_multi_gpus.sh:
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b.yaml configs/sft.yaml --seed $RANDOM"

Fine-Tuning and Evaluation

Run the inference code to start fine-tuning.

bash finetune_single_gpu.sh # Single GPU
bash finetune_multi_gpus.sh # Multi GPUs

Using the Fine-Tuned Model

The fine-tuned model cannot be merged; here is how to modify the inference configuration file inference.sh:

run_cmd="$environs python sample_video.py --base configs/cogvideox_<model_parameters>_lora.yaml configs/inference.yaml --seed 42"

Then, execute the code:

bash inference.sh 

Converting to Huggingface Diffusers Supported Weights

The SAT weight format is different from Huggingface's weight format and needs to be converted. Please run:

python ../tools/convert_weight_sat2hf.py

Note: This content has not yet been tested with LORA fine-tuning models.