mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-06 03:57:56 +08:00
456 lines
14 KiB
Markdown
456 lines
14 KiB
Markdown
# SAT CogVideoX
|
||
|
||
[中文阅读](./README_zh.md)
|
||
|
||
[日本語で読む](./README_ja.md)
|
||
|
||
This folder contains inference code using [SAT](https://github.com/THUDM/SwissArmyTransformer) weights, along with
|
||
fine-tuning code for SAT weights.
|
||
|
||
If you are interested in the `CogVideoX1.0` version of the model, please check the SAT
|
||
folder [here](https://github.com/THUDM/CogVideo/releases/tag/v1.0). This branch only supports the `CogVideoX1.5` series
|
||
models.
|
||
|
||
## Inference Model
|
||
|
||
### 1. Make sure you have installed all dependencies in this folder
|
||
|
||
```
|
||
pip install -r requirements.txt
|
||
```
|
||
|
||
### 2. Download the Model Weights
|
||
|
||
First, download the model weights from the SAT mirror.
|
||
|
||
#### CogVideoX1.5 Model
|
||
|
||
```
|
||
git lfs install
|
||
git clone https://huggingface.co/THUDM/CogVideoX1.5-5B-SAT
|
||
```
|
||
|
||
This command downloads three models: Transformers, VAE, and T5 Encoder.
|
||
|
||
#### CogVideoX Model
|
||
|
||
For the CogVideoX-2B model, download as follows:
|
||
|
||
```
|
||
mkdir CogVideoX-2b-sat
|
||
cd CogVideoX-2b-sat
|
||
wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1
|
||
mv 'index.html?dl=1' vae.zip
|
||
unzip vae.zip
|
||
wget https://cloud.tsinghua.edu.cn/f/556a3e1329e74f1bac45/?dl=1
|
||
mv 'index.html?dl=1' transformer.zip
|
||
unzip transformer.zip
|
||
```
|
||
|
||
Download the `transformers` file for the CogVideoX-5B model (the VAE file is the same as for 2B):
|
||
|
||
+ [CogVideoX-5B](https://cloud.tsinghua.edu.cn/d/fcef5b3904294a6885e5/?p=%2F&mode=list)
|
||
+ [CogVideoX-5B-I2V](https://cloud.tsinghua.edu.cn/d/5cc62a2d6e7d45c0a2f6/?p=%2F1&mode=list)
|
||
|
||
Arrange the model files in the following structure:
|
||
|
||
```
|
||
.
|
||
├── transformer
|
||
│ ├── 1000 (or 1)
|
||
│ │ └── mp_rank_00_model_states.pt
|
||
│ └── latest
|
||
└── vae
|
||
└── 3d-vae.pt
|
||
```
|
||
|
||
Since model weight files are large, it’s recommended to use `git lfs`.
|
||
See [here](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing) for `git lfs` installation.
|
||
|
||
```
|
||
git lfs install
|
||
```
|
||
|
||
Next, clone the T5 model, which is used as an encoder and doesn’t require training or fine-tuning.
|
||
> You may also use the model file location on [Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b).
|
||
|
||
```
|
||
git clone https://huggingface.co/THUDM/CogVideoX-2b.git # Download model from Huggingface
|
||
# git clone https://www.modelscope.cn/ZhipuAI/CogVideoX-2b.git # Download from Modelscope
|
||
mkdir t5-v1_1-xxl
|
||
mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl
|
||
```
|
||
|
||
This will yield a safetensor format T5 file that can be loaded without error during Deepspeed fine-tuning.
|
||
|
||
```
|
||
├── added_tokens.json
|
||
├── config.json
|
||
├── model-00001-of-00002.safetensors
|
||
├── model-00002-of-00002.safetensors
|
||
├── model.safetensors.index.json
|
||
├── special_tokens_map.json
|
||
├── spiece.model
|
||
└── tokenizer_config.json
|
||
|
||
0 directories, 8 files
|
||
```
|
||
|
||
### 3. Modify `configs/cogvideox_*.yaml` file.
|
||
|
||
```yaml
|
||
model:
|
||
scale_factor: 1.55258426
|
||
disable_first_stage_autocast: true
|
||
log_keys:
|
||
- txt
|
||
|
||
denoiser_config:
|
||
target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser
|
||
params:
|
||
num_idx: 1000
|
||
quantize_c_noise: False
|
||
|
||
weighting_config:
|
||
target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting
|
||
scaling_config:
|
||
target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling
|
||
discretization_config:
|
||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||
params:
|
||
shift_scale: 3.0
|
||
|
||
network_config:
|
||
target: dit_video_concat.DiffusionTransformer
|
||
params:
|
||
time_embed_dim: 512
|
||
elementwise_affine: True
|
||
num_frames: 49
|
||
time_compressed_rate: 4
|
||
latent_width: 90
|
||
latent_height: 60
|
||
num_layers: 30
|
||
patch_size: 2
|
||
in_channels: 16
|
||
out_channels: 16
|
||
hidden_size: 1920
|
||
adm_in_channels: 256
|
||
num_attention_heads: 30
|
||
|
||
transformer_args:
|
||
checkpoint_activations: True ## using gradient checkpointing
|
||
vocab_size: 1
|
||
max_sequence_length: 64
|
||
layernorm_order: pre
|
||
skip_init: false
|
||
model_parallel_size: 1
|
||
is_decoder: false
|
||
|
||
modules:
|
||
pos_embed_config:
|
||
target: dit_video_concat.Basic3DPositionEmbeddingMixin
|
||
params:
|
||
text_length: 226
|
||
height_interpolation: 1.875
|
||
width_interpolation: 1.875
|
||
|
||
patch_embed_config:
|
||
target: dit_video_concat.ImagePatchEmbeddingMixin
|
||
params:
|
||
text_hidden_size: 4096
|
||
|
||
adaln_layer_config:
|
||
target: dit_video_concat.AdaLNMixin
|
||
params:
|
||
qk_ln: True
|
||
|
||
final_layer_config:
|
||
target: dit_video_concat.FinalLayerMixin
|
||
|
||
conditioner_config:
|
||
target: sgm.modules.GeneralConditioner
|
||
params:
|
||
emb_models:
|
||
- is_trainable: false
|
||
input_key: txt
|
||
ucg_rate: 0.1
|
||
target: sgm.modules.encoders.modules.FrozenT5Embedder
|
||
params:
|
||
model_dir: "t5-v1_1-xxl" # absolute path to CogVideoX-2b/t5-v1_1-xxl weight folder
|
||
max_length: 226
|
||
|
||
first_stage_config:
|
||
target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper
|
||
params:
|
||
cp_size: 1
|
||
ckpt_path: "CogVideoX-2b-sat/vae/3d-vae.pt" # absolute path to CogVideoX-2b-sat/vae/3d-vae.pt file
|
||
ignore_keys: [ 'loss' ]
|
||
|
||
loss_config:
|
||
target: torch.nn.Identity
|
||
|
||
regularizer_config:
|
||
target: vae_modules.regularizers.DiagonalGaussianRegularizer
|
||
|
||
encoder_config:
|
||
target: vae_modules.cp_enc_dec.ContextParallelEncoder3D
|
||
params:
|
||
double_z: true
|
||
z_channels: 16
|
||
resolution: 256
|
||
in_channels: 3
|
||
out_ch: 3
|
||
ch: 128
|
||
ch_mult: [ 1, 2, 2, 4 ]
|
||
attn_resolutions: [ ]
|
||
num_res_blocks: 3
|
||
dropout: 0.0
|
||
gather_norm: True
|
||
|
||
decoder_config:
|
||
target: vae_modules.cp_enc_dec.ContextParallelDecoder3D
|
||
params:
|
||
double_z: True
|
||
z_channels: 16
|
||
resolution: 256
|
||
in_channels: 3
|
||
out_ch: 3
|
||
ch: 128
|
||
ch_mult: [ 1, 2, 2, 4 ]
|
||
attn_resolutions: [ ]
|
||
num_res_blocks: 3
|
||
dropout: 0.0
|
||
gather_norm: False
|
||
|
||
loss_fn_config:
|
||
target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss
|
||
params:
|
||
offset_noise_level: 0
|
||
sigma_sampler_config:
|
||
target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling
|
||
params:
|
||
uniform_sampling: True
|
||
num_idx: 1000
|
||
discretization_config:
|
||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||
params:
|
||
shift_scale: 3.0
|
||
|
||
sampler_config:
|
||
target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler
|
||
params:
|
||
num_steps: 50
|
||
verbose: True
|
||
|
||
discretization_config:
|
||
target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization
|
||
params:
|
||
shift_scale: 3.0
|
||
|
||
guider_config:
|
||
target: sgm.modules.diffusionmodules.guiders.DynamicCFG
|
||
params:
|
||
scale: 6
|
||
exp: 5
|
||
num_steps: 50
|
||
```
|
||
|
||
### 4. Modify `configs/inference.yaml` file.
|
||
|
||
```yaml
|
||
args:
|
||
latent_channels: 16
|
||
mode: inference
|
||
load: "{absolute_path/to/your}/transformer" # Absolute path to CogVideoX-2b-sat/transformer folder
|
||
# load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter
|
||
|
||
batch_size: 1
|
||
input_type: txt # You can choose "txt" for plain text input or change to "cli" for command-line input
|
||
input_file: configs/test.txt # Plain text file, can be edited
|
||
sampling_num_frames: 13 # For CogVideoX1.5-5B it must be 42 or 22. For CogVideoX-5B / 2B, it must be 13, 11, or 9.
|
||
sampling_fps: 8
|
||
fp16: True # For CogVideoX-2B
|
||
# bf16: True # For CogVideoX-5B
|
||
output_dir: outputs/
|
||
force_inference: True
|
||
```
|
||
|
||
+ If using a text file to save multiple prompts, modify `configs/test.txt` as needed. One prompt per line. If you are
|
||
unsure how to write prompts, use [this code](../inference/convert_demo.py) to call an LLM for refinement.
|
||
+ To use command-line input, modify:
|
||
|
||
```
|
||
input_type: cli
|
||
```
|
||
|
||
This allows you to enter prompts from the command line.
|
||
|
||
To modify the output video location, change:
|
||
|
||
```
|
||
output_dir: outputs/
|
||
```
|
||
|
||
The default location is the `.outputs/` folder.
|
||
|
||
### 5. Run the Inference Code to Perform Inference
|
||
|
||
```
|
||
bash inference.sh
|
||
```
|
||
|
||
## Fine-tuning the Model
|
||
|
||
### Preparing the Dataset
|
||
|
||
The dataset should be structured as follows:
|
||
|
||
```
|
||
.
|
||
├── labels
|
||
│ ├── 1.txt
|
||
│ ├── 2.txt
|
||
│ ├── ...
|
||
└── videos
|
||
├── 1.mp4
|
||
├── 2.mp4
|
||
├── ...
|
||
```
|
||
|
||
Each txt file should have the same name as the corresponding video file and contain the label for that video. The videos
|
||
and labels should correspond one-to-one. Generally, avoid using one video with multiple labels.
|
||
|
||
For style fine-tuning, prepare at least 50 videos and labels with a similar style to facilitate fitting.
|
||
|
||
### Modifying the Configuration File
|
||
|
||
We support two fine-tuning methods: `Lora` and full-parameter fine-tuning. Note that both methods only fine-tune the
|
||
`transformer` part. The `VAE` part is not modified, and `T5` is only used as an encoder.
|
||
Modify the files in `configs/sft.yaml` (full fine-tuning) as follows:
|
||
|
||
```yaml
|
||
# checkpoint_activations: True ## using gradient checkpointing (both `checkpoint_activations` in the config file need to be set to True)
|
||
model_parallel_size: 1 # Model parallel size
|
||
experiment_name: lora-disney # Experiment name (do not change)
|
||
mode: finetune # Mode (do not change)
|
||
load: "{your_CogVideoX-2b-sat_path}/transformer" ## Path to Transformer model
|
||
no_load_rng: True # Whether to load random number seed
|
||
train_iters: 1000 # Training iterations
|
||
eval_iters: 1 # Evaluation iterations
|
||
eval_interval: 100 # Evaluation interval
|
||
eval_batch_size: 1 # Evaluation batch size
|
||
save: ckpts # Model save path
|
||
save_interval: 100 # Save interval
|
||
log_interval: 20 # Log output interval
|
||
train_data: [ "your train data path" ]
|
||
valid_data: [ "your val data path" ] # Training and validation sets can be the same
|
||
split: 1,0,0 # Proportion for training, validation, and test sets
|
||
num_workers: 8 # Number of data loader workers
|
||
force_train: True # Allow missing keys when loading checkpoint (T5 and VAE loaded separately)
|
||
only_log_video_latents: True # Avoid memory usage from VAE decoding
|
||
deepspeed:
|
||
bf16:
|
||
enabled: False # For CogVideoX-2B Turn to False and For CogVideoX-5B Turn to True
|
||
fp16:
|
||
enabled: True # For CogVideoX-2B Turn to True and For CogVideoX-5B Turn to False
|
||
```
|
||
|
||
``` To use Lora fine-tuning, you also need to modify `cogvideox_<model parameters>_lora` file:
|
||
|
||
Here's an example using `CogVideoX-2B`:
|
||
|
||
```
|
||
model:
|
||
scale_factor: 1.55258426
|
||
disable_first_stage_autocast: true
|
||
not_trainable_prefixes: [ 'all' ] ## Uncomment to unlock
|
||
log_keys:
|
||
- txt
|
||
|
||
lora_config: ## Uncomment to unlock
|
||
target: sat.model.finetune.lora2.LoraMixin
|
||
params:
|
||
r: 256
|
||
```
|
||
|
||
### Modify the Run Script
|
||
|
||
Edit `finetune_single_gpu.sh` or `finetune_multi_gpus.sh` and select the config file. Below are two examples:
|
||
|
||
1. If you want to use the `CogVideoX-2B` model with `Lora`, modify `finetune_single_gpu.sh` or `finetune_multi_gpus.sh`
|
||
as follows:
|
||
|
||
```
|
||
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b_lora.yaml configs/sft.yaml --seed $RANDOM"
|
||
```
|
||
|
||
2. If you want to use the `CogVideoX-2B` model with full fine-tuning, modify `finetune_single_gpu.sh` or
|
||
`finetune_multi_gpus.sh` as follows:
|
||
|
||
```
|
||
run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b.yaml configs/sft.yaml --seed $RANDOM"
|
||
```
|
||
|
||
### Fine-tuning and Validation
|
||
|
||
Run the inference code to start fine-tuning.
|
||
|
||
```
|
||
bash finetune_single_gpu.sh # Single GPU
|
||
bash finetune_multi_gpus.sh # Multi GPUs
|
||
```
|
||
|
||
### Using the Fine-tuned Model
|
||
|
||
The fine-tuned model cannot be merged. Here’s how to modify the inference configuration file `inference.sh`
|
||
|
||
```
|
||
run_cmd="$environs python sample_video.py --base configs/cogvideox_<model parameters>_lora.yaml configs/inference.yaml --seed 42"
|
||
```
|
||
|
||
Then, run the code:
|
||
|
||
```
|
||
bash inference.sh
|
||
```
|
||
|
||
### Converting to Huggingface Diffusers-compatible Weights
|
||
|
||
The SAT weight format is different from Huggingface’s format and requires conversion. Run
|
||
|
||
```
|
||
python ../tools/convert_weight_sat2hf.py
|
||
```
|
||
|
||
### Exporting Lora Weights from SAT to Huggingface Diffusers
|
||
|
||
Support is provided for exporting Lora weights from SAT to Huggingface Diffusers format.
|
||
After training with the above steps, you’ll find the SAT model with Lora weights in
|
||
{args.save}/1000/1000/mp_rank_00_model_states.pt
|
||
|
||
The export script `export_sat_lora_weight.py` is located in the CogVideoX repository under `tools/`. After exporting,
|
||
use `load_cogvideox_lora.py` for inference.
|
||
|
||
Export command:
|
||
|
||
```
|
||
python tools/export_sat_lora_weight.py --sat_pt_path {args.save}/{experiment_name}-09-09-21-10/1000/mp_rank_00_model_states.pt --lora_save_directory {args.save}/export_hf_lora_weights_1/
|
||
```
|
||
|
||
The following model structures were modified during training. Here is the mapping between SAT and HF Lora structures.
|
||
Lora adds a low-rank weight to the attention structure of the model.
|
||
|
||
```
|
||
'attention.query_key_value.matrix_A.0': 'attn1.to_q.lora_A.weight',
|
||
'attention.query_key_value.matrix_A.1': 'attn1.to_k.lora_A.weight',
|
||
'attention.query_key_value.matrix_A.2': 'attn1.to_v.lora_A.weight',
|
||
'attention.query_key_value.matrix_B.0': 'attn1.to_q.lora_B.weight',
|
||
'attention.query_key_value.matrix_B.1': 'attn1.to_k.lora_B.weight',
|
||
'attention.query_key_value.matrix_B.2': 'attn1.to_v.lora_B.weight',
|
||
'attention.dense.matrix_A.0': 'attn1.to_out.0.lora_A.weight',
|
||
'attention.dense.matrix_B.0': 'attn1.to_out.0.lora_B.weight'
|
||
```
|
||
|
||
Using `export_sat_lora_weight.py` will convert these to the HF format Lora structure.
|
||

|