CogVideo/finetune/utils/torch_utils.py

53 lines
1.6 KiB
Python

from typing import Dict, List, Optional, Union
import torch
from accelerate import Accelerator
from diffusers.utils.torch_utils import is_compiled_module
def unwrap_model(accelerator: Accelerator, model):
model = accelerator.unwrap_model(model)
model = model._orig_mod if is_compiled_module(model) else model
return model
def align_device_and_dtype(
x: Union[torch.Tensor, Dict[str, torch.Tensor]],
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
if isinstance(x, torch.Tensor):
if device is not None:
x = x.to(device)
if dtype is not None:
x = x.to(dtype)
elif isinstance(x, dict):
if device is not None:
x = {k: align_device_and_dtype(v, device, dtype) for k, v in x.items()}
if dtype is not None:
x = {k: align_device_and_dtype(v, device, dtype) for k, v in x.items()}
return x
def expand_tensor_to_dims(tensor, ndim):
while len(tensor.shape) < ndim:
tensor = tensor.unsqueeze(-1)
return tensor
def cast_training_params(model: Union[torch.nn.Module, List[torch.nn.Module]], dtype=torch.float32):
"""
Casts the training parameters of the model to the specified data type.
Args:
model: The PyTorch model whose parameters will be cast.
dtype: The data type to which the model parameters will be cast.
"""
if not isinstance(model, list):
model = [model]
for m in model:
for param in m.parameters():
# only upcast trainable parameters into fp32
if param.requires_grad:
param.data = param.to(dtype)