mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
113 lines
4.7 KiB
Python
113 lines
4.7 KiB
Python
"""
|
|
This script demonstrates how to generate a video from a text prompt using CogVideoX with 🤗Huggingface Diffusers Pipeline.
|
|
|
|
Note:
|
|
This script requires the `diffusers>=0.30.0` library to be installed.
|
|
If the video exported using OpenCV appears “completely green” and cannot be viewed, lease switch to a different player to watch it. This is a normal phenomenon.
|
|
|
|
Run the script:
|
|
$ python cli_demo.py --prompt "A girl ridding a bike." --model_path THUDM/CogVideoX-2b
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import tempfile
|
|
from typing import Union, List
|
|
|
|
import PIL
|
|
import imageio
|
|
import numpy as np
|
|
import torch
|
|
from diffusers import CogVideoXPipeline
|
|
|
|
|
|
def export_to_video_imageio(
|
|
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
|
|
) -> str:
|
|
"""
|
|
Export the video frames to a video file using imageio lib to Avoid "green screen" issue (for example CogVideoX)
|
|
"""
|
|
if output_video_path is None:
|
|
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
|
|
if isinstance(video_frames[0], PIL.Image.Image):
|
|
video_frames = [np.array(frame) for frame in video_frames]
|
|
with imageio.get_writer(output_video_path, fps=fps) as writer:
|
|
for frame in video_frames:
|
|
writer.append_data(frame)
|
|
return output_video_path
|
|
|
|
|
|
def generate_video(
|
|
prompt: str,
|
|
model_path: str,
|
|
output_path: str = "./output.mp4",
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 6.0,
|
|
num_videos_per_prompt: int = 1,
|
|
device: str = "cuda",
|
|
dtype: torch.dtype = torch.float16,
|
|
):
|
|
# Load the pre-trained CogVideoX pipeline with the specified precision (float16) and move it to the specified device
|
|
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
|
|
|
|
# Encode the prompt to get the prompt embeddings
|
|
prompt_embeds, _ = pipe.encode_prompt(
|
|
prompt=prompt, # The textual description for video generation
|
|
negative_prompt=None, # The negative prompt to guide the video generation
|
|
do_classifier_free_guidance=True, # Whether to use classifier-free guidance
|
|
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
|
|
max_sequence_length=226, # Maximum length of the sequence, must be 226
|
|
device=device, # Device to use for computation
|
|
dtype=dtype, # Data type for computation
|
|
)
|
|
# Must enable model CPU offload to avoid OOM issue on GPU with 24GB memory
|
|
pipe.enable_model_cpu_offload()
|
|
# Generate the video frames using the pipeline
|
|
video = pipe(
|
|
num_inference_steps=num_inference_steps, # Number of inference steps
|
|
guidance_scale=guidance_scale, # Guidance scale for classifier-free guidance
|
|
prompt_embeds=prompt_embeds, # Encoded prompt embeddings
|
|
negative_prompt_embeds=torch.zeros_like(prompt_embeds), # Not Supported negative prompt
|
|
).frames[0]
|
|
# Export the generated frames to a video file. fps must be 8
|
|
export_to_video_imageio(video, output_path, fps=8)
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
|
|
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
|
|
parser.add_argument(
|
|
"--model_path", type=str, default="THUDM/CogVideoX-2b", help="The path of the pre-trained model to be used"
|
|
)
|
|
parser.add_argument(
|
|
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
|
|
)
|
|
parser.add_argument(
|
|
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
|
|
)
|
|
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
|
|
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
|
|
parser.add_argument(
|
|
"--device", type=str, default="cuda", help="The device to use for computation (e.g., 'cuda' or 'cpu')"
|
|
)
|
|
|
|
parser.add_argument(
|
|
"--dtype", type=str, default="float16", help="The data type for computation (e.g., 'float16' or 'float32')"
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Convert dtype argument to torch.dtype, NOT suggest BF16.
|
|
dtype = torch.float16 if args.dtype == "float16" else torch.float32
|
|
|
|
# main function to generate video.
|
|
generate_video(
|
|
prompt=args.prompt,
|
|
model_path=args.model_path,
|
|
output_path=args.output_path,
|
|
num_inference_steps=args.num_inference_steps,
|
|
guidance_scale=args.guidance_scale,
|
|
num_videos_per_prompt=args.num_videos_per_prompt,
|
|
device=args.device,
|
|
dtype=dtype,
|
|
)
|