mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
1544 lines
59 KiB
Python
1544 lines
59 KiB
Python
# Copyright 2024 The CogView team, Tsinghua University & ZhipuAI and The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
import shutil
|
|
from pathlib import Path
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import transformers
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from accelerate.utils import DistributedDataParallelKwargs, ProjectConfiguration, set_seed
|
|
from huggingface_hub import create_repo, upload_folder
|
|
from peft import LoraConfig, get_peft_model_state_dict, set_peft_model_state_dict
|
|
from torch.utils.data import DataLoader, Dataset
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
from transformers import AutoTokenizer, T5EncoderModel, T5Tokenizer
|
|
|
|
import diffusers
|
|
from diffusers import AutoencoderKLCogVideoX, CogVideoXDPMScheduler, CogVideoXPipeline, CogVideoXTransformer3DModel
|
|
from diffusers.models.embeddings import get_3d_rotary_pos_embed
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.pipelines.cogvideo.pipeline_cogvideox import get_resize_crop_region_for_grid
|
|
from diffusers.training_utils import (
|
|
cast_training_params,
|
|
free_memory,
|
|
)
|
|
from diffusers.utils import check_min_version, convert_unet_state_dict_to_peft, export_to_video, is_wandb_available
|
|
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
|
|
from diffusers.utils.torch_utils import is_compiled_module
|
|
|
|
|
|
if is_wandb_available():
|
|
import wandb
|
|
|
|
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
|
|
check_min_version("0.31.0.dev0")
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def get_args():
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script for CogVideoX.")
|
|
|
|
# Model information
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--revision",
|
|
type=str,
|
|
default=None,
|
|
required=False,
|
|
help="Revision of pretrained model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--variant",
|
|
type=str,
|
|
default=None,
|
|
help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
|
|
)
|
|
parser.add_argument(
|
|
"--cache_dir",
|
|
type=str,
|
|
default=None,
|
|
help="The directory where the downloaded models and datasets will be stored.",
|
|
)
|
|
|
|
# Dataset information
|
|
parser.add_argument(
|
|
"--dataset_name",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"The name of the Dataset (from the HuggingFace hub) containing the training data of instance images (could be your own, possibly private,"
|
|
" dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
|
|
" or to a folder containing files that 🤗 Datasets can understand."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--dataset_config_name",
|
|
type=str,
|
|
default=None,
|
|
help="The config of the Dataset, leave as None if there's only one config.",
|
|
)
|
|
parser.add_argument(
|
|
"--instance_data_root",
|
|
type=str,
|
|
default=None,
|
|
help=("A folder containing the training data."),
|
|
)
|
|
parser.add_argument(
|
|
"--video_column",
|
|
type=str,
|
|
default="video",
|
|
help="The column of the dataset containing videos. Or, the name of the file in `--instance_data_root` folder containing the line-separated path to video data.",
|
|
)
|
|
parser.add_argument(
|
|
"--caption_column",
|
|
type=str,
|
|
default="text",
|
|
help="The column of the dataset containing the instance prompt for each video. Or, the name of the file in `--instance_data_root` folder containing the line-separated instance prompts.",
|
|
)
|
|
parser.add_argument(
|
|
"--id_token", type=str, default=None, help="Identifier token appended to the start of each prompt if provided."
|
|
)
|
|
parser.add_argument(
|
|
"--dataloader_num_workers",
|
|
type=int,
|
|
default=0,
|
|
help=(
|
|
"Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
|
|
),
|
|
)
|
|
|
|
# Validation
|
|
parser.add_argument(
|
|
"--validation_prompt",
|
|
type=str,
|
|
default=None,
|
|
help="One or more prompt(s) that is used during validation to verify that the model is learning. Multiple validation prompts should be separated by the '--validation_prompt_seperator' string.",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_prompt_separator",
|
|
type=str,
|
|
default=":::",
|
|
help="String that separates multiple validation prompts",
|
|
)
|
|
parser.add_argument(
|
|
"--num_validation_videos",
|
|
type=int,
|
|
default=1,
|
|
help="Number of videos that should be generated during validation per `validation_prompt`.",
|
|
)
|
|
parser.add_argument(
|
|
"--validation_epochs",
|
|
type=int,
|
|
default=50,
|
|
help=(
|
|
"Run validation every X epochs. Validation consists of running the prompt `args.validation_prompt` multiple times: `args.num_validation_videos`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--guidance_scale",
|
|
type=float,
|
|
default=6,
|
|
help="The guidance scale to use while sampling validation videos.",
|
|
)
|
|
parser.add_argument(
|
|
"--use_dynamic_cfg",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether or not to use the default cosine dynamic guidance schedule when sampling validation videos.",
|
|
)
|
|
|
|
# Training information
|
|
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--rank",
|
|
type=int,
|
|
default=128,
|
|
help=("The dimension of the LoRA update matrices."),
|
|
)
|
|
parser.add_argument(
|
|
"--lora_alpha",
|
|
type=float,
|
|
default=128,
|
|
help=("The scaling factor to scale LoRA weight update. The actual scaling factor is `lora_alpha / rank`"),
|
|
)
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default=None,
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
|
|
" 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the"
|
|
" flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="cogvideox-lora",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument(
|
|
"--height",
|
|
type=int,
|
|
default=480,
|
|
help="All input videos are resized to this height.",
|
|
)
|
|
parser.add_argument(
|
|
"--width",
|
|
type=int,
|
|
default=720,
|
|
help="All input videos are resized to this width.",
|
|
)
|
|
parser.add_argument("--fps", type=int, default=8, help="All input videos will be used at this FPS.")
|
|
parser.add_argument(
|
|
"--max_num_frames", type=int, default=49, help="All input videos will be truncated to these many frames."
|
|
)
|
|
parser.add_argument(
|
|
"--skip_frames_start",
|
|
type=int,
|
|
default=0,
|
|
help="Number of frames to skip from the beginning of each input video. Useful if training data contains intro sequences.",
|
|
)
|
|
parser.add_argument(
|
|
"--skip_frames_end",
|
|
type=int,
|
|
default=0,
|
|
help="Number of frames to skip from the end of each input video. Useful if training data contains outro sequences.",
|
|
)
|
|
parser.add_argument(
|
|
"--random_flip",
|
|
action="store_true",
|
|
help="whether to randomly flip videos horizontally",
|
|
)
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=1)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=None,
|
|
help="Total number of training steps to perform. If provided, overrides `--num_train_epochs`.",
|
|
)
|
|
parser.add_argument(
|
|
"--checkpointing_steps",
|
|
type=int,
|
|
default=500,
|
|
help=(
|
|
"Save a checkpoint of the training state every X updates. These checkpoints can be used both as final"
|
|
" checkpoints in case they are better than the last checkpoint, and are also suitable for resuming"
|
|
" training using `--resume_from_checkpoint`."
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--checkpoints_total_limit",
|
|
type=int,
|
|
default=None,
|
|
help=("Max number of checkpoints to store."),
|
|
)
|
|
parser.add_argument(
|
|
"--resume_from_checkpoint",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
"Whether training should be resumed from a previous checkpoint. Use a path saved by"
|
|
' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_accumulation_steps",
|
|
type=int,
|
|
default=1,
|
|
help="Number of updates steps to accumulate before performing a backward/update pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--gradient_checkpointing",
|
|
action="store_true",
|
|
help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-4,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=False,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument(
|
|
"--lr_num_cycles",
|
|
type=int,
|
|
default=1,
|
|
help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
|
|
)
|
|
parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
|
|
parser.add_argument(
|
|
"--enable_slicing",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether or not to use VAE slicing for saving memory.",
|
|
)
|
|
parser.add_argument(
|
|
"--enable_tiling",
|
|
action="store_true",
|
|
default=False,
|
|
help="Whether or not to use VAE tiling for saving memory.",
|
|
)
|
|
|
|
# Optimizer
|
|
parser.add_argument(
|
|
"--optimizer",
|
|
type=lambda s: s.lower(),
|
|
default="adam",
|
|
choices=["adam", "adamw", "prodigy"],
|
|
help=("The optimizer type to use."),
|
|
)
|
|
parser.add_argument(
|
|
"--use_8bit_adam",
|
|
action="store_true",
|
|
help="Whether or not to use 8-bit Adam from bitsandbytes. Ignored if optimizer is not set to AdamW",
|
|
)
|
|
parser.add_argument(
|
|
"--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam and Prodigy optimizers."
|
|
)
|
|
parser.add_argument(
|
|
"--adam_beta2", type=float, default=0.95, help="The beta2 parameter for the Adam and Prodigy optimizers."
|
|
)
|
|
parser.add_argument(
|
|
"--prodigy_beta3",
|
|
type=float,
|
|
default=None,
|
|
help="Coefficients for computing the Prodigy optimizer's stepsize using running averages. If set to None, uses the value of square root of beta2.",
|
|
)
|
|
parser.add_argument("--prodigy_decouple", action="store_true", help="Use AdamW style decoupled weight decay")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-04, help="Weight decay to use for unet params")
|
|
parser.add_argument(
|
|
"--adam_epsilon",
|
|
type=float,
|
|
default=1e-08,
|
|
help="Epsilon value for the Adam optimizer and Prodigy optimizers.",
|
|
)
|
|
parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
|
|
parser.add_argument("--prodigy_use_bias_correction", action="store_true", help="Turn on Adam's bias correction.")
|
|
parser.add_argument(
|
|
"--prodigy_safeguard_warmup",
|
|
action="store_true",
|
|
help="Remove lr from the denominator of D estimate to avoid issues during warm-up stage.",
|
|
)
|
|
|
|
# Other information
|
|
parser.add_argument("--tracker_name", type=str, default=None, help="Project tracker name")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help="Directory where logs are stored.",
|
|
)
|
|
parser.add_argument(
|
|
"--allow_tf32",
|
|
action="store_true",
|
|
help=(
|
|
"Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
|
|
" https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--report_to",
|
|
type=str,
|
|
default=None,
|
|
help=(
|
|
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
|
|
' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
|
|
),
|
|
)
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
class VideoDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
instance_data_root: Optional[str] = None,
|
|
dataset_name: Optional[str] = None,
|
|
dataset_config_name: Optional[str] = None,
|
|
caption_column: str = "text",
|
|
video_column: str = "video",
|
|
height: int = 480,
|
|
width: int = 720,
|
|
fps: int = 8,
|
|
max_num_frames: int = 49,
|
|
skip_frames_start: int = 0,
|
|
skip_frames_end: int = 0,
|
|
cache_dir: Optional[str] = None,
|
|
id_token: Optional[str] = None,
|
|
) -> None:
|
|
super().__init__()
|
|
|
|
self.instance_data_root = Path(instance_data_root) if instance_data_root is not None else None
|
|
self.dataset_name = dataset_name
|
|
self.dataset_config_name = dataset_config_name
|
|
self.caption_column = caption_column
|
|
self.video_column = video_column
|
|
self.height = height
|
|
self.width = width
|
|
self.fps = fps
|
|
self.max_num_frames = max_num_frames
|
|
self.skip_frames_start = skip_frames_start
|
|
self.skip_frames_end = skip_frames_end
|
|
self.cache_dir = cache_dir
|
|
self.id_token = id_token or ""
|
|
|
|
if dataset_name is not None:
|
|
self.instance_prompts, self.instance_video_paths = self._load_dataset_from_hub()
|
|
else:
|
|
self.instance_prompts, self.instance_video_paths = self._load_dataset_from_local_path()
|
|
|
|
self.num_instance_videos = len(self.instance_video_paths)
|
|
if self.num_instance_videos != len(self.instance_prompts):
|
|
raise ValueError(
|
|
f"Expected length of instance prompts and videos to be the same but found {len(self.instance_prompts)=} and {len(self.instance_video_paths)=}. Please ensure that the number of caption prompts and videos match in your dataset."
|
|
)
|
|
|
|
self.instance_videos = self._preprocess_data()
|
|
|
|
def __len__(self):
|
|
return self.num_instance_videos
|
|
|
|
def __getitem__(self, index):
|
|
return {
|
|
"instance_prompt": self.id_token + self.instance_prompts[index],
|
|
"instance_video": self.instance_videos[index],
|
|
}
|
|
|
|
def _load_dataset_from_hub(self):
|
|
try:
|
|
from datasets import load_dataset
|
|
except ImportError:
|
|
raise ImportError(
|
|
"You are trying to load your data using the datasets library. If you wish to train using custom "
|
|
"captions please install the datasets library: `pip install datasets`. If you wish to load a "
|
|
"local folder containing images only, specify --instance_data_root instead."
|
|
)
|
|
|
|
# Downloading and loading a dataset from the hub. See more about loading custom images at
|
|
# https://huggingface.co/docs/datasets/v2.0.0/en/dataset_script
|
|
dataset = load_dataset(
|
|
self.dataset_name,
|
|
self.dataset_config_name,
|
|
cache_dir=self.cache_dir,
|
|
)
|
|
column_names = dataset["train"].column_names
|
|
|
|
if self.video_column is None:
|
|
video_column = column_names[0]
|
|
logger.info(f"`video_column` defaulting to {video_column}")
|
|
else:
|
|
video_column = self.video_column
|
|
if video_column not in column_names:
|
|
raise ValueError(
|
|
f"`--video_column` value '{video_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
|
)
|
|
|
|
if self.caption_column is None:
|
|
caption_column = column_names[1]
|
|
logger.info(f"`caption_column` defaulting to {caption_column}")
|
|
else:
|
|
caption_column = self.caption_column
|
|
if self.caption_column not in column_names:
|
|
raise ValueError(
|
|
f"`--caption_column` value '{self.caption_column}' not found in dataset columns. Dataset columns are: {', '.join(column_names)}"
|
|
)
|
|
|
|
instance_prompts = dataset["train"][caption_column]
|
|
instance_videos = [Path(self.instance_data_root, filepath) for filepath in dataset["train"][video_column]]
|
|
|
|
return instance_prompts, instance_videos
|
|
|
|
def _load_dataset_from_local_path(self):
|
|
if not self.instance_data_root.exists():
|
|
raise ValueError("Instance videos root folder does not exist")
|
|
|
|
prompt_path = self.instance_data_root.joinpath(self.caption_column)
|
|
video_path = self.instance_data_root.joinpath(self.video_column)
|
|
|
|
if not prompt_path.exists() or not prompt_path.is_file():
|
|
raise ValueError(
|
|
"Expected `--caption_column` to be path to a file in `--instance_data_root` containing line-separated text prompts."
|
|
)
|
|
if not video_path.exists() or not video_path.is_file():
|
|
raise ValueError(
|
|
"Expected `--video_column` to be path to a file in `--instance_data_root` containing line-separated paths to video data in the same directory."
|
|
)
|
|
|
|
with open(prompt_path, "r", encoding="utf-8") as file:
|
|
instance_prompts = [line.strip() for line in file.readlines() if len(line.strip()) > 0]
|
|
with open(video_path, "r", encoding="utf-8") as file:
|
|
instance_videos = [
|
|
self.instance_data_root.joinpath(line.strip()) for line in file.readlines() if len(line.strip()) > 0
|
|
]
|
|
|
|
if any(not path.is_file() for path in instance_videos):
|
|
raise ValueError(
|
|
"Expected '--video_column' to be a path to a file in `--instance_data_root` containing line-separated paths to video data but found atleast one path that is not a valid file."
|
|
)
|
|
|
|
return instance_prompts, instance_videos
|
|
|
|
def _preprocess_data(self):
|
|
try:
|
|
import decord
|
|
except ImportError:
|
|
raise ImportError(
|
|
"The `decord` package is required for loading the video dataset. Install with `pip install decord`"
|
|
)
|
|
|
|
decord.bridge.set_bridge("torch")
|
|
|
|
videos = []
|
|
train_transforms = transforms.Compose(
|
|
[
|
|
transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0),
|
|
]
|
|
)
|
|
|
|
for filename in self.instance_video_paths:
|
|
video_reader = decord.VideoReader(uri=filename.as_posix(), width=self.width, height=self.height)
|
|
video_num_frames = len(video_reader)
|
|
|
|
start_frame = min(self.skip_frames_start, video_num_frames)
|
|
end_frame = max(0, video_num_frames - self.skip_frames_end)
|
|
if end_frame <= start_frame:
|
|
frames = video_reader.get_batch([start_frame])
|
|
elif end_frame - start_frame <= self.max_num_frames:
|
|
frames = video_reader.get_batch(list(range(start_frame, end_frame)))
|
|
else:
|
|
indices = list(range(start_frame, end_frame, (end_frame - start_frame) // self.max_num_frames))
|
|
frames = video_reader.get_batch(indices)
|
|
|
|
# Ensure that we don't go over the limit
|
|
frames = frames[: self.max_num_frames]
|
|
selected_num_frames = frames.shape[0]
|
|
|
|
# Choose first (4k + 1) frames as this is how many is required by the VAE
|
|
remainder = (3 + (selected_num_frames % 4)) % 4
|
|
if remainder != 0:
|
|
frames = frames[:-remainder]
|
|
selected_num_frames = frames.shape[0]
|
|
|
|
assert (selected_num_frames - 1) % 4 == 0
|
|
|
|
# Training transforms
|
|
frames = frames.float()
|
|
frames = torch.stack([train_transforms(frame) for frame in frames], dim=0)
|
|
videos.append(frames.permute(0, 3, 1, 2).contiguous()) # [F, C, H, W]
|
|
|
|
return videos
|
|
|
|
|
|
def save_model_card(
|
|
repo_id: str,
|
|
videos=None,
|
|
base_model: str = None,
|
|
validation_prompt=None,
|
|
repo_folder=None,
|
|
fps=8,
|
|
):
|
|
widget_dict = []
|
|
if videos is not None:
|
|
for i, video in enumerate(videos):
|
|
export_to_video(video, os.path.join(repo_folder, f"final_video_{i}.mp4", fps=fps))
|
|
widget_dict.append(
|
|
{"text": validation_prompt if validation_prompt else " ", "output": {"url": f"video_{i}.mp4"}}
|
|
)
|
|
|
|
model_description = f"""
|
|
# CogVideoX LoRA - {repo_id}
|
|
|
|
<Gallery />
|
|
|
|
## Model description
|
|
|
|
These are {repo_id} LoRA weights for {base_model}.
|
|
|
|
The weights were trained using the [CogVideoX Diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/cogvideo/train_cogvideox_lora.py).
|
|
|
|
Was LoRA for the text encoder enabled? No.
|
|
|
|
## Download model
|
|
|
|
[Download the *.safetensors LoRA]({repo_id}/tree/main) in the Files & versions tab.
|
|
|
|
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
|
|
|
|
```py
|
|
from diffusers import CogVideoXPipeline
|
|
import torch
|
|
|
|
pipe = CogVideoXPipeline.from_pretrained("THUDM/CogVideoX-5b", torch_dtype=torch.bfloat16).to("cuda")
|
|
pipe.load_lora_weights("{repo_id}", weight_name="pytorch_lora_weights.safetensors", adapter_name=["cogvideox-lora"])
|
|
|
|
# The LoRA adapter weights are determined by what was used for training.
|
|
# In this case, we assume `--lora_alpha` is 32 and `--rank` is 64.
|
|
# It can be made lower or higher from what was used in training to decrease or amplify the effect
|
|
# of the LoRA upto a tolerance, beyond which one might notice no effect at all or overflows.
|
|
pipe.set_adapters(["cogvideox-lora"], [32 / 64])
|
|
|
|
video = pipe("{validation_prompt}", guidance_scale=6, use_dynamic_cfg=True).frames[0]
|
|
```
|
|
|
|
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
|
|
|
|
## License
|
|
|
|
Please adhere to the licensing terms as described [here](https://huggingface.co/THUDM/CogVideoX-5b/blob/main/LICENSE) and [here](https://huggingface.co/THUDM/CogVideoX-2b/blob/main/LICENSE).
|
|
"""
|
|
model_card = load_or_create_model_card(
|
|
repo_id_or_path=repo_id,
|
|
from_training=True,
|
|
license="other",
|
|
base_model=base_model,
|
|
prompt=validation_prompt,
|
|
model_description=model_description,
|
|
widget=widget_dict,
|
|
)
|
|
tags = [
|
|
"text-to-video",
|
|
"diffusers-training",
|
|
"diffusers",
|
|
"lora",
|
|
"cogvideox",
|
|
"cogvideox-diffusers",
|
|
"template:sd-lora",
|
|
]
|
|
|
|
model_card = populate_model_card(model_card, tags=tags)
|
|
model_card.save(os.path.join(repo_folder, "README.md"))
|
|
|
|
|
|
def log_validation(
|
|
pipe,
|
|
args,
|
|
accelerator,
|
|
pipeline_args,
|
|
epoch,
|
|
is_final_validation: bool = False,
|
|
):
|
|
logger.info(
|
|
f"Running validation... \n Generating {args.num_validation_videos} videos with prompt: {pipeline_args['prompt']}."
|
|
)
|
|
# We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
|
|
scheduler_args = {}
|
|
|
|
if "variance_type" in pipe.scheduler.config:
|
|
variance_type = pipe.scheduler.config.variance_type
|
|
|
|
if variance_type in ["learned", "learned_range"]:
|
|
variance_type = "fixed_small"
|
|
|
|
scheduler_args["variance_type"] = variance_type
|
|
|
|
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, **scheduler_args)
|
|
pipe = pipe.to(accelerator.device)
|
|
# pipe.set_progress_bar_config(disable=True)
|
|
|
|
# run inference
|
|
generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) if args.seed else None
|
|
|
|
videos = []
|
|
for _ in range(args.num_validation_videos):
|
|
video = pipe(**pipeline_args, generator=generator, output_type="np").frames[0]
|
|
videos.append(video)
|
|
|
|
for tracker in accelerator.trackers:
|
|
phase_name = "test" if is_final_validation else "validation"
|
|
if tracker.name == "wandb":
|
|
video_filenames = []
|
|
for i, video in enumerate(videos):
|
|
prompt = (
|
|
pipeline_args["prompt"][:25]
|
|
.replace(" ", "_")
|
|
.replace(" ", "_")
|
|
.replace("'", "_")
|
|
.replace('"', "_")
|
|
.replace("/", "_")
|
|
)
|
|
filename = os.path.join(args.output_dir, f"{phase_name}_video_{i}_{prompt}.mp4")
|
|
export_to_video(video, filename, fps=8)
|
|
video_filenames.append(filename)
|
|
|
|
tracker.log(
|
|
{
|
|
phase_name: [
|
|
wandb.Video(filename, caption=f"{i}: {pipeline_args['prompt']}")
|
|
for i, filename in enumerate(video_filenames)
|
|
]
|
|
}
|
|
)
|
|
|
|
free_memory()
|
|
|
|
return videos
|
|
|
|
|
|
def _get_t5_prompt_embeds(
|
|
tokenizer: T5Tokenizer,
|
|
text_encoder: T5EncoderModel,
|
|
prompt: Union[str, List[str]],
|
|
num_videos_per_prompt: int = 1,
|
|
max_sequence_length: int = 226,
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
text_input_ids=None,
|
|
):
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
batch_size = len(prompt)
|
|
|
|
if tokenizer is not None:
|
|
text_inputs = tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=max_sequence_length,
|
|
truncation=True,
|
|
add_special_tokens=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids
|
|
else:
|
|
if text_input_ids is None:
|
|
raise ValueError("`text_input_ids` must be provided when the tokenizer is not specified.")
|
|
|
|
prompt_embeds = text_encoder(text_input_ids.to(device))[0]
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
_, seq_len, _ = prompt_embeds.shape
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
|
|
|
return prompt_embeds
|
|
|
|
|
|
def encode_prompt(
|
|
tokenizer: T5Tokenizer,
|
|
text_encoder: T5EncoderModel,
|
|
prompt: Union[str, List[str]],
|
|
num_videos_per_prompt: int = 1,
|
|
max_sequence_length: int = 226,
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
text_input_ids=None,
|
|
):
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
prompt_embeds = _get_t5_prompt_embeds(
|
|
tokenizer,
|
|
text_encoder,
|
|
prompt=prompt,
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
device=device,
|
|
dtype=dtype,
|
|
text_input_ids=text_input_ids,
|
|
)
|
|
return prompt_embeds
|
|
|
|
|
|
def compute_prompt_embeddings(
|
|
tokenizer, text_encoder, prompt, max_sequence_length, device, dtype, requires_grad: bool = False
|
|
):
|
|
if requires_grad:
|
|
prompt_embeds = encode_prompt(
|
|
tokenizer,
|
|
text_encoder,
|
|
prompt,
|
|
num_videos_per_prompt=1,
|
|
max_sequence_length=max_sequence_length,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
else:
|
|
with torch.no_grad():
|
|
prompt_embeds = encode_prompt(
|
|
tokenizer,
|
|
text_encoder,
|
|
prompt,
|
|
num_videos_per_prompt=1,
|
|
max_sequence_length=max_sequence_length,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
return prompt_embeds
|
|
|
|
|
|
def prepare_rotary_positional_embeddings(
|
|
height: int,
|
|
width: int,
|
|
num_frames: int,
|
|
vae_scale_factor_spatial: int = 8,
|
|
patch_size: int = 2,
|
|
attention_head_dim: int = 64,
|
|
device: Optional[torch.device] = None,
|
|
base_height: int = 480,
|
|
base_width: int = 720,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
grid_height = height // (vae_scale_factor_spatial * patch_size)
|
|
grid_width = width // (vae_scale_factor_spatial * patch_size)
|
|
base_size_width = base_width // (vae_scale_factor_spatial * patch_size)
|
|
base_size_height = base_height // (vae_scale_factor_spatial * patch_size)
|
|
|
|
grid_crops_coords = get_resize_crop_region_for_grid((grid_height, grid_width), base_size_width, base_size_height)
|
|
freqs_cos, freqs_sin = get_3d_rotary_pos_embed(
|
|
embed_dim=attention_head_dim,
|
|
crops_coords=grid_crops_coords,
|
|
grid_size=(grid_height, grid_width),
|
|
temporal_size=num_frames,
|
|
)
|
|
|
|
freqs_cos = freqs_cos.to(device=device)
|
|
freqs_sin = freqs_sin.to(device=device)
|
|
return freqs_cos, freqs_sin
|
|
|
|
|
|
def get_optimizer(args, params_to_optimize, use_deepspeed: bool = False):
|
|
# Use DeepSpeed optimzer
|
|
if use_deepspeed:
|
|
from accelerate.utils import DummyOptim
|
|
|
|
return DummyOptim(
|
|
params_to_optimize,
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
eps=args.adam_epsilon,
|
|
weight_decay=args.adam_weight_decay,
|
|
)
|
|
|
|
# Optimizer creation
|
|
supported_optimizers = ["adam", "adamw", "prodigy"]
|
|
if args.optimizer not in supported_optimizers:
|
|
logger.warning(
|
|
f"Unsupported choice of optimizer: {args.optimizer}. Supported optimizers include {supported_optimizers}. Defaulting to AdamW"
|
|
)
|
|
args.optimizer = "adamw"
|
|
|
|
if args.use_8bit_adam and not (args.optimizer.lower() not in ["adam", "adamw"]):
|
|
logger.warning(
|
|
f"use_8bit_adam is ignored when optimizer is not set to 'Adam' or 'AdamW'. Optimizer was "
|
|
f"set to {args.optimizer.lower()}"
|
|
)
|
|
|
|
if args.use_8bit_adam:
|
|
try:
|
|
import bitsandbytes as bnb
|
|
except ImportError:
|
|
raise ImportError(
|
|
"To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
|
|
)
|
|
|
|
if args.optimizer.lower() == "adamw":
|
|
optimizer_class = bnb.optim.AdamW8bit if args.use_8bit_adam else torch.optim.AdamW
|
|
|
|
optimizer = optimizer_class(
|
|
params_to_optimize,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
eps=args.adam_epsilon,
|
|
weight_decay=args.adam_weight_decay,
|
|
)
|
|
elif args.optimizer.lower() == "adam":
|
|
optimizer_class = bnb.optim.Adam8bit if args.use_8bit_adam else torch.optim.Adam
|
|
|
|
optimizer = optimizer_class(
|
|
params_to_optimize,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
eps=args.adam_epsilon,
|
|
weight_decay=args.adam_weight_decay,
|
|
)
|
|
elif args.optimizer.lower() == "prodigy":
|
|
try:
|
|
import prodigyopt
|
|
except ImportError:
|
|
raise ImportError("To use Prodigy, please install the prodigyopt library: `pip install prodigyopt`")
|
|
|
|
optimizer_class = prodigyopt.Prodigy
|
|
|
|
if args.learning_rate <= 0.1:
|
|
logger.warning(
|
|
"Learning rate is too low. When using prodigy, it's generally better to set learning rate around 1.0"
|
|
)
|
|
|
|
optimizer = optimizer_class(
|
|
params_to_optimize,
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
beta3=args.prodigy_beta3,
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
decouple=args.prodigy_decouple,
|
|
use_bias_correction=args.prodigy_use_bias_correction,
|
|
safeguard_warmup=args.prodigy_safeguard_warmup,
|
|
)
|
|
|
|
return optimizer
|
|
|
|
|
|
def main(args):
|
|
if args.report_to == "wandb" and args.hub_token is not None:
|
|
raise ValueError(
|
|
"You cannot use both --report_to=wandb and --hub_token due to a security risk of exposing your token."
|
|
" Please use `huggingface-cli login` to authenticate with the Hub."
|
|
)
|
|
|
|
if torch.backends.mps.is_available() and args.mixed_precision == "bf16":
|
|
# due to pytorch#99272, MPS does not yet support bfloat16.
|
|
raise ValueError(
|
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
|
|
)
|
|
|
|
logging_dir = Path(args.output_dir, args.logging_dir)
|
|
|
|
accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
|
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
|
mixed_precision=args.mixed_precision,
|
|
log_with=args.report_to,
|
|
project_config=accelerator_project_config,
|
|
kwargs_handlers=[kwargs],
|
|
)
|
|
|
|
# Disable AMP for MPS.
|
|
if torch.backends.mps.is_available():
|
|
accelerator.native_amp = False
|
|
|
|
if args.report_to == "wandb":
|
|
if not is_wandb_available():
|
|
raise ImportError("Make sure to install wandb if you want to use it for logging during training.")
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
logger.info(accelerator.state, main_process_only=False)
|
|
if accelerator.is_local_main_process:
|
|
transformers.utils.logging.set_verbosity_warning()
|
|
diffusers.utils.logging.set_verbosity_info()
|
|
else:
|
|
transformers.utils.logging.set_verbosity_error()
|
|
diffusers.utils.logging.set_verbosity_error()
|
|
|
|
# If passed along, set the training seed now.
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
# Handle the repository creation
|
|
if accelerator.is_main_process:
|
|
if args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
if args.push_to_hub:
|
|
repo_id = create_repo(
|
|
repo_id=args.hub_model_id or Path(args.output_dir).name,
|
|
exist_ok=True,
|
|
).repo_id
|
|
|
|
# Prepare models and scheduler
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision
|
|
)
|
|
|
|
text_encoder = T5EncoderModel.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision
|
|
)
|
|
|
|
# CogVideoX-2b weights are stored in float16
|
|
# CogVideoX-5b and CogVideoX-5b-I2V weights are stored in bfloat16
|
|
load_dtype = torch.bfloat16 if "5b" in args.pretrained_model_name_or_path.lower() else torch.float16
|
|
transformer = CogVideoXTransformer3DModel.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
subfolder="transformer",
|
|
torch_dtype=load_dtype,
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
)
|
|
|
|
vae = AutoencoderKLCogVideoX.from_pretrained(
|
|
args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
|
|
)
|
|
|
|
scheduler = CogVideoXDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
|
|
|
|
if args.enable_slicing:
|
|
vae.enable_slicing()
|
|
if args.enable_tiling:
|
|
vae.enable_tiling()
|
|
|
|
# We only train the additional adapter LoRA layers
|
|
text_encoder.requires_grad_(False)
|
|
transformer.requires_grad_(False)
|
|
vae.requires_grad_(False)
|
|
|
|
# For mixed precision training we cast all non-trainable weights (vae, text_encoder and transformer) to half-precision
|
|
# as these weights are only used for inference, keeping weights in full precision is not required.
|
|
weight_dtype = torch.float32
|
|
if accelerator.state.deepspeed_plugin:
|
|
# DeepSpeed is handling precision, use what's in the DeepSpeed config
|
|
if (
|
|
"fp16" in accelerator.state.deepspeed_plugin.deepspeed_config
|
|
and accelerator.state.deepspeed_plugin.deepspeed_config["fp16"]["enabled"]
|
|
):
|
|
weight_dtype = torch.float16
|
|
if (
|
|
"bf16" in accelerator.state.deepspeed_plugin.deepspeed_config
|
|
and accelerator.state.deepspeed_plugin.deepspeed_config["bf16"]["enabled"]
|
|
):
|
|
weight_dtype = torch.float16
|
|
else:
|
|
if accelerator.mixed_precision == "fp16":
|
|
weight_dtype = torch.float16
|
|
elif accelerator.mixed_precision == "bf16":
|
|
weight_dtype = torch.bfloat16
|
|
|
|
if torch.backends.mps.is_available() and weight_dtype == torch.bfloat16:
|
|
# due to pytorch#99272, MPS does not yet support bfloat16.
|
|
raise ValueError(
|
|
"Mixed precision training with bfloat16 is not supported on MPS. Please use fp16 (recommended) or fp32 instead."
|
|
)
|
|
|
|
text_encoder.to(accelerator.device, dtype=weight_dtype)
|
|
transformer.to(accelerator.device, dtype=weight_dtype)
|
|
vae.to(accelerator.device, dtype=weight_dtype)
|
|
|
|
if args.gradient_checkpointing:
|
|
transformer.enable_gradient_checkpointing()
|
|
|
|
# now we will add new LoRA weights to the attention layers
|
|
transformer_lora_config = LoraConfig(
|
|
r=args.rank,
|
|
lora_alpha=args.lora_alpha,
|
|
init_lora_weights=True,
|
|
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
|
|
)
|
|
transformer.add_adapter(transformer_lora_config)
|
|
|
|
def unwrap_model(model):
|
|
model = accelerator.unwrap_model(model)
|
|
model = model._orig_mod if is_compiled_module(model) else model
|
|
return model
|
|
|
|
# create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
|
|
def save_model_hook(models, weights, output_dir):
|
|
if accelerator.is_main_process:
|
|
transformer_lora_layers_to_save = None
|
|
|
|
for model in models:
|
|
if isinstance(model, type(unwrap_model(transformer))):
|
|
transformer_lora_layers_to_save = get_peft_model_state_dict(model)
|
|
else:
|
|
raise ValueError(f"unexpected save model: {model.__class__}")
|
|
|
|
# make sure to pop weight so that corresponding model is not saved again
|
|
weights.pop()
|
|
|
|
CogVideoXPipeline.save_lora_weights(
|
|
output_dir,
|
|
transformer_lora_layers=transformer_lora_layers_to_save,
|
|
)
|
|
|
|
def load_model_hook(models, input_dir):
|
|
transformer_ = None
|
|
|
|
while len(models) > 0:
|
|
model = models.pop()
|
|
|
|
if isinstance(model, type(unwrap_model(transformer))):
|
|
transformer_ = model
|
|
else:
|
|
raise ValueError(f"Unexpected save model: {model.__class__}")
|
|
|
|
lora_state_dict = CogVideoXPipeline.lora_state_dict(input_dir)
|
|
|
|
transformer_state_dict = {
|
|
f'{k.replace("transformer.", "")}': v for k, v in lora_state_dict.items() if k.startswith("transformer.")
|
|
}
|
|
transformer_state_dict = convert_unet_state_dict_to_peft(transformer_state_dict)
|
|
incompatible_keys = set_peft_model_state_dict(transformer_, transformer_state_dict, adapter_name="default")
|
|
if incompatible_keys is not None:
|
|
# check only for unexpected keys
|
|
unexpected_keys = getattr(incompatible_keys, "unexpected_keys", None)
|
|
if unexpected_keys:
|
|
logger.warning(
|
|
f"Loading adapter weights from state_dict led to unexpected keys not found in the model: "
|
|
f" {unexpected_keys}. "
|
|
)
|
|
|
|
# Make sure the trainable params are in float32. This is again needed since the base models
|
|
# are in `weight_dtype`. More details:
|
|
# https://github.com/huggingface/diffusers/pull/6514#discussion_r1449796804
|
|
if args.mixed_precision == "fp16":
|
|
# only upcast trainable parameters (LoRA) into fp32
|
|
cast_training_params([transformer_])
|
|
|
|
accelerator.register_save_state_pre_hook(save_model_hook)
|
|
accelerator.register_load_state_pre_hook(load_model_hook)
|
|
|
|
# Enable TF32 for faster training on Ampere GPUs,
|
|
# cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
|
|
if args.allow_tf32 and torch.cuda.is_available():
|
|
torch.backends.cuda.matmul.allow_tf32 = True
|
|
|
|
if args.scale_lr:
|
|
args.learning_rate = (
|
|
args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
|
|
)
|
|
|
|
# Make sure the trainable params are in float32.
|
|
if args.mixed_precision == "fp16":
|
|
# only upcast trainable parameters (LoRA) into fp32
|
|
cast_training_params([transformer], dtype=torch.float32)
|
|
|
|
transformer_lora_parameters = list(filter(lambda p: p.requires_grad, transformer.parameters()))
|
|
|
|
# Optimization parameters
|
|
transformer_parameters_with_lr = {"params": transformer_lora_parameters, "lr": args.learning_rate}
|
|
params_to_optimize = [transformer_parameters_with_lr]
|
|
|
|
use_deepspeed_optimizer = (
|
|
accelerator.state.deepspeed_plugin is not None
|
|
and "optimizer" in accelerator.state.deepspeed_plugin.deepspeed_config
|
|
)
|
|
use_deepspeed_scheduler = (
|
|
accelerator.state.deepspeed_plugin is not None
|
|
and "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config
|
|
)
|
|
|
|
optimizer = get_optimizer(args, params_to_optimize, use_deepspeed=use_deepspeed_optimizer)
|
|
|
|
# Dataset and DataLoader
|
|
train_dataset = VideoDataset(
|
|
instance_data_root=args.instance_data_root,
|
|
dataset_name=args.dataset_name,
|
|
dataset_config_name=args.dataset_config_name,
|
|
caption_column=args.caption_column,
|
|
video_column=args.video_column,
|
|
height=args.height,
|
|
width=args.width,
|
|
fps=args.fps,
|
|
max_num_frames=args.max_num_frames,
|
|
skip_frames_start=args.skip_frames_start,
|
|
skip_frames_end=args.skip_frames_end,
|
|
cache_dir=args.cache_dir,
|
|
id_token=args.id_token,
|
|
)
|
|
|
|
def encode_video(video):
|
|
video = video.to(accelerator.device, dtype=vae.dtype).unsqueeze(0)
|
|
video = video.permute(0, 2, 1, 3, 4) # [B, C, F, H, W]
|
|
latent_dist = vae.encode(video).latent_dist
|
|
return latent_dist
|
|
|
|
train_dataset.instance_videos = [encode_video(video) for video in train_dataset.instance_videos]
|
|
|
|
def collate_fn(examples):
|
|
videos = [example["instance_video"].sample() * vae.config.scaling_factor for example in examples]
|
|
prompts = [example["instance_prompt"] for example in examples]
|
|
|
|
videos = torch.cat(videos)
|
|
videos = videos.to(memory_format=torch.contiguous_format).float()
|
|
|
|
return {
|
|
"videos": videos,
|
|
"prompts": prompts,
|
|
}
|
|
|
|
train_dataloader = DataLoader(
|
|
train_dataset,
|
|
batch_size=args.train_batch_size,
|
|
shuffle=True,
|
|
collate_fn=collate_fn,
|
|
num_workers=args.dataloader_num_workers,
|
|
)
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
overrode_max_train_steps = False
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
overrode_max_train_steps = True
|
|
|
|
if use_deepspeed_scheduler:
|
|
from accelerate.utils import DummyScheduler
|
|
|
|
lr_scheduler = DummyScheduler(
|
|
name=args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
total_num_steps=args.max_train_steps * accelerator.num_processes,
|
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
|
)
|
|
else:
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
|
|
num_training_steps=args.max_train_steps * accelerator.num_processes,
|
|
num_cycles=args.lr_num_cycles,
|
|
power=args.lr_power,
|
|
)
|
|
|
|
# Prepare everything with our `accelerator`.
|
|
transformer, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
transformer, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
|
|
if overrode_max_train_steps:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
# Afterwards we recalculate our number of training epochs
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
# We need to initialize the trackers we use, and also store our configuration.
|
|
# The trackers initializes automatically on the main process.
|
|
if accelerator.is_main_process:
|
|
tracker_name = args.tracker_name or "cogvideox-lora"
|
|
accelerator.init_trackers(tracker_name, config=vars(args))
|
|
|
|
# Train!
|
|
total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
|
|
num_trainable_parameters = sum(param.numel() for model in params_to_optimize for param in model["params"])
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num trainable parameters = {num_trainable_parameters}")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num batches each epoch = {len(train_dataloader)}")
|
|
logger.info(f" Num epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
|
|
logger.info(f" Gradient accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
global_step = 0
|
|
first_epoch = 0
|
|
|
|
# Potentially load in the weights and states from a previous save
|
|
if not args.resume_from_checkpoint:
|
|
initial_global_step = 0
|
|
else:
|
|
if args.resume_from_checkpoint != "latest":
|
|
path = os.path.basename(args.resume_from_checkpoint)
|
|
else:
|
|
# Get the mos recent checkpoint
|
|
dirs = os.listdir(args.output_dir)
|
|
dirs = [d for d in dirs if d.startswith("checkpoint")]
|
|
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
|
|
path = dirs[-1] if len(dirs) > 0 else None
|
|
|
|
if path is None:
|
|
accelerator.print(
|
|
f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
|
|
)
|
|
args.resume_from_checkpoint = None
|
|
initial_global_step = 0
|
|
else:
|
|
accelerator.print(f"Resuming from checkpoint {path}")
|
|
accelerator.load_state(os.path.join(args.output_dir, path))
|
|
global_step = int(path.split("-")[1])
|
|
|
|
initial_global_step = global_step
|
|
first_epoch = global_step // num_update_steps_per_epoch
|
|
|
|
progress_bar = tqdm(
|
|
range(0, args.max_train_steps),
|
|
initial=initial_global_step,
|
|
desc="Steps",
|
|
# Only show the progress bar once on each machine.
|
|
disable=not accelerator.is_local_main_process,
|
|
)
|
|
vae_scale_factor_spatial = 2 ** (len(vae.config.block_out_channels) - 1)
|
|
|
|
# For DeepSpeed training
|
|
model_config = transformer.module.config if hasattr(transformer, "module") else transformer.config
|
|
|
|
for epoch in range(first_epoch, args.num_train_epochs):
|
|
transformer.train()
|
|
|
|
for step, batch in enumerate(train_dataloader):
|
|
models_to_accumulate = [transformer]
|
|
|
|
with accelerator.accumulate(models_to_accumulate):
|
|
model_input = batch["videos"].permute(0, 2, 1, 3, 4).to(dtype=weight_dtype) # [B, F, C, H, W]
|
|
prompts = batch["prompts"]
|
|
|
|
# encode prompts
|
|
prompt_embeds = compute_prompt_embeddings(
|
|
tokenizer,
|
|
text_encoder,
|
|
prompts,
|
|
model_config.max_text_seq_length,
|
|
accelerator.device,
|
|
weight_dtype,
|
|
requires_grad=False,
|
|
)
|
|
|
|
# Sample noise that will be added to the latents
|
|
noise = torch.randn_like(model_input)
|
|
batch_size, num_frames, num_channels, height, width = model_input.shape
|
|
|
|
# Sample a random timestep for each image
|
|
timesteps = torch.randint(
|
|
0, scheduler.config.num_train_timesteps, (batch_size,), device=model_input.device
|
|
)
|
|
timesteps = timesteps.long()
|
|
|
|
# Prepare rotary embeds
|
|
image_rotary_emb = (
|
|
prepare_rotary_positional_embeddings(
|
|
height=args.height,
|
|
width=args.width,
|
|
num_frames=num_frames,
|
|
vae_scale_factor_spatial=vae_scale_factor_spatial,
|
|
patch_size=model_config.patch_size,
|
|
attention_head_dim=model_config.attention_head_dim,
|
|
device=accelerator.device,
|
|
)
|
|
if model_config.use_rotary_positional_embeddings
|
|
else None
|
|
)
|
|
|
|
# Add noise to the model input according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_model_input = scheduler.add_noise(model_input, noise, timesteps)
|
|
|
|
# Predict the noise residual
|
|
model_output = transformer(
|
|
hidden_states=noisy_model_input,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep=timesteps,
|
|
image_rotary_emb=image_rotary_emb,
|
|
return_dict=False,
|
|
)[0]
|
|
model_pred = scheduler.get_velocity(model_output, noisy_model_input, timesteps)
|
|
|
|
alphas_cumprod = scheduler.alphas_cumprod[timesteps]
|
|
weights = 1 / (1 - alphas_cumprod)
|
|
while len(weights.shape) < len(model_pred.shape):
|
|
weights = weights.unsqueeze(-1)
|
|
|
|
target = model_input
|
|
|
|
loss = torch.mean((weights * (model_pred - target) ** 2).reshape(batch_size, -1), dim=1)
|
|
loss = loss.mean()
|
|
accelerator.backward(loss)
|
|
|
|
if accelerator.sync_gradients:
|
|
params_to_clip = transformer.parameters()
|
|
accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
|
|
|
|
if accelerator.state.deepspeed_plugin is None:
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
lr_scheduler.step()
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
if accelerator.is_main_process:
|
|
if global_step % args.checkpointing_steps == 0:
|
|
# _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
|
|
if args.checkpoints_total_limit is not None:
|
|
checkpoints = os.listdir(args.output_dir)
|
|
checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
|
|
checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))
|
|
|
|
# before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
|
|
if len(checkpoints) >= args.checkpoints_total_limit:
|
|
num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
|
|
removing_checkpoints = checkpoints[0:num_to_remove]
|
|
|
|
logger.info(
|
|
f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
|
|
)
|
|
logger.info(f"Removing checkpoints: {', '.join(removing_checkpoints)}")
|
|
|
|
for removing_checkpoint in removing_checkpoints:
|
|
removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
|
|
shutil.rmtree(removing_checkpoint)
|
|
|
|
save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
|
|
accelerator.save_state(save_path)
|
|
logger.info(f"Saved state to {save_path}")
|
|
|
|
logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
|
|
progress_bar.set_postfix(**logs)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
if accelerator.is_main_process:
|
|
if args.validation_prompt is not None and (epoch + 1) % args.validation_epochs == 0:
|
|
# Create pipeline
|
|
pipe = CogVideoXPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
transformer=unwrap_model(transformer),
|
|
text_encoder=unwrap_model(text_encoder),
|
|
vae=unwrap_model(vae),
|
|
scheduler=scheduler,
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
torch_dtype=weight_dtype,
|
|
)
|
|
|
|
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
|
|
for validation_prompt in validation_prompts:
|
|
pipeline_args = {
|
|
"prompt": validation_prompt,
|
|
"guidance_scale": args.guidance_scale,
|
|
"use_dynamic_cfg": args.use_dynamic_cfg,
|
|
"height": args.height,
|
|
"width": args.width,
|
|
}
|
|
|
|
validation_outputs = log_validation(
|
|
pipe=pipe,
|
|
args=args,
|
|
accelerator=accelerator,
|
|
pipeline_args=pipeline_args,
|
|
epoch=epoch,
|
|
)
|
|
|
|
# Save the lora layers
|
|
accelerator.wait_for_everyone()
|
|
if accelerator.is_main_process:
|
|
transformer = unwrap_model(transformer)
|
|
dtype = (
|
|
torch.float16
|
|
if args.mixed_precision == "fp16"
|
|
else torch.bfloat16
|
|
if args.mixed_precision == "bf16"
|
|
else torch.float32
|
|
)
|
|
transformer = transformer.to(dtype)
|
|
transformer_lora_layers = get_peft_model_state_dict(transformer)
|
|
|
|
CogVideoXPipeline.save_lora_weights(
|
|
save_directory=args.output_dir,
|
|
transformer_lora_layers=transformer_lora_layers,
|
|
)
|
|
|
|
# Final test inference
|
|
pipe = CogVideoXPipeline.from_pretrained(
|
|
args.pretrained_model_name_or_path,
|
|
revision=args.revision,
|
|
variant=args.variant,
|
|
torch_dtype=weight_dtype,
|
|
)
|
|
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config)
|
|
|
|
if args.enable_slicing:
|
|
pipe.vae.enable_slicing()
|
|
if args.enable_tiling:
|
|
pipe.vae.enable_tiling()
|
|
|
|
# Load LoRA weights
|
|
lora_scaling = args.lora_alpha / args.rank
|
|
pipe.load_lora_weights(args.output_dir, adapter_name="cogvideox-lora")
|
|
pipe.set_adapters(["cogvideox-lora"], [lora_scaling])
|
|
|
|
# Run inference
|
|
validation_outputs = []
|
|
if args.validation_prompt and args.num_validation_videos > 0:
|
|
validation_prompts = args.validation_prompt.split(args.validation_prompt_separator)
|
|
for validation_prompt in validation_prompts:
|
|
pipeline_args = {
|
|
"prompt": validation_prompt,
|
|
"guidance_scale": args.guidance_scale,
|
|
"use_dynamic_cfg": args.use_dynamic_cfg,
|
|
"height": args.height,
|
|
"width": args.width,
|
|
}
|
|
|
|
video = log_validation(
|
|
pipe=pipe,
|
|
args=args,
|
|
accelerator=accelerator,
|
|
pipeline_args=pipeline_args,
|
|
epoch=epoch,
|
|
is_final_validation=True,
|
|
)
|
|
validation_outputs.extend(video)
|
|
|
|
if args.push_to_hub:
|
|
save_model_card(
|
|
repo_id,
|
|
videos=validation_outputs,
|
|
base_model=args.pretrained_model_name_or_path,
|
|
validation_prompt=args.validation_prompt,
|
|
repo_folder=args.output_dir,
|
|
fps=args.fps,
|
|
)
|
|
upload_folder(
|
|
repo_id=repo_id,
|
|
folder_path=args.output_dir,
|
|
commit_message="End of training",
|
|
ignore_patterns=["step_*", "epoch_*"],
|
|
)
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = get_args()
|
|
main(args)
|