mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
111 lines
3.5 KiB
Python
111 lines
3.5 KiB
Python
from abc import abstractmethod
|
|
from typing import Any, Tuple
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
|
|
class DiagonalGaussianDistribution(object):
|
|
def __init__(self, parameters, deterministic=False):
|
|
self.parameters = parameters
|
|
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1)
|
|
self.logvar = torch.clamp(self.logvar, -30.0, 20.0)
|
|
self.deterministic = deterministic
|
|
self.std = torch.exp(0.5 * self.logvar)
|
|
self.var = torch.exp(self.logvar)
|
|
if self.deterministic:
|
|
self.var = self.std = torch.zeros_like(self.mean).to(device=self.parameters.device)
|
|
|
|
def sample(self):
|
|
# x = self.mean + self.std * torch.randn(self.mean.shape).to(
|
|
# device=self.parameters.device
|
|
# )
|
|
x = self.mean + self.std * torch.randn_like(self.mean)
|
|
return x
|
|
|
|
def kl(self, other=None):
|
|
if self.deterministic:
|
|
return torch.Tensor([0.0])
|
|
else:
|
|
if other is None:
|
|
return 0.5 * torch.sum(
|
|
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar,
|
|
dim=[1, 2, 3],
|
|
)
|
|
else:
|
|
return 0.5 * torch.sum(
|
|
torch.pow(self.mean - other.mean, 2) / other.var
|
|
+ self.var / other.var
|
|
- 1.0
|
|
- self.logvar
|
|
+ other.logvar,
|
|
dim=[1, 2, 3],
|
|
)
|
|
|
|
def nll(self, sample, dims=[1, 2, 3]):
|
|
if self.deterministic:
|
|
return torch.Tensor([0.0])
|
|
logtwopi = np.log(2.0 * np.pi)
|
|
return 0.5 * torch.sum(
|
|
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var,
|
|
dim=dims,
|
|
)
|
|
|
|
def mode(self):
|
|
return self.mean
|
|
|
|
|
|
class AbstractRegularizer(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def get_trainable_parameters(self) -> Any:
|
|
raise NotImplementedError()
|
|
|
|
|
|
class IdentityRegularizer(AbstractRegularizer):
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
|
return z, dict()
|
|
|
|
def get_trainable_parameters(self) -> Any:
|
|
yield from ()
|
|
|
|
|
|
def measure_perplexity(
|
|
predicted_indices: torch.Tensor, num_centroids: int
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
# src: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py
|
|
# eval cluster perplexity. when perplexity == num_embeddings then all clusters are used exactly equally
|
|
encodings = F.one_hot(predicted_indices, num_centroids).float().reshape(-1, num_centroids)
|
|
avg_probs = encodings.mean(0)
|
|
perplexity = (-(avg_probs * torch.log(avg_probs + 1e-10)).sum()).exp()
|
|
cluster_use = torch.sum(avg_probs > 0)
|
|
return perplexity, cluster_use
|
|
|
|
|
|
class DiagonalGaussianRegularizer(AbstractRegularizer):
|
|
def __init__(self, sample: bool = True):
|
|
super().__init__()
|
|
self.sample = sample
|
|
|
|
def get_trainable_parameters(self) -> Any:
|
|
yield from ()
|
|
|
|
def forward(self, z: torch.Tensor) -> Tuple[torch.Tensor, dict]:
|
|
log = dict()
|
|
posterior = DiagonalGaussianDistribution(z)
|
|
if self.sample:
|
|
z = posterior.sample()
|
|
else:
|
|
z = posterior.mode()
|
|
kl_loss = posterior.kl()
|
|
kl_loss = torch.sum(kl_loss) / kl_loss.shape[0]
|
|
log["kl_loss"] = kl_loss
|
|
return z, log
|