mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
390 lines
13 KiB
Python
390 lines
13 KiB
Python
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import Callable, Dict, List, Optional, Set, Tuple, Type, Union
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch import nn
|
|
|
|
|
|
class LoRALinearLayer(nn.Module):
|
|
def __init__(
|
|
self, in_features, out_features, rank=4, network_alpha=None, device=None, dtype=None
|
|
):
|
|
super().__init__()
|
|
|
|
self.down = nn.Linear(in_features, rank, bias=False, device=device, dtype=dtype)
|
|
self.up = nn.Linear(rank, out_features, bias=False, device=device, dtype=dtype)
|
|
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
|
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
|
self.network_alpha = network_alpha
|
|
self.rank = rank
|
|
self.out_features = out_features
|
|
self.in_features = in_features
|
|
|
|
nn.init.normal_(self.down.weight, std=1 / rank)
|
|
nn.init.zeros_(self.up.weight)
|
|
|
|
def forward(self, hidden_states):
|
|
orig_dtype = hidden_states.dtype
|
|
dtype = self.down.weight.dtype
|
|
|
|
down_hidden_states = self.down(hidden_states.to(dtype))
|
|
up_hidden_states = self.up(down_hidden_states)
|
|
|
|
if self.network_alpha is not None:
|
|
up_hidden_states *= self.network_alpha / self.rank
|
|
|
|
return up_hidden_states.to(orig_dtype)
|
|
|
|
|
|
class LoRAConv2dLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
in_features,
|
|
out_features,
|
|
rank=4,
|
|
kernel_size=(1, 1),
|
|
stride=(1, 1),
|
|
padding=0,
|
|
network_alpha=None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.down = nn.Conv2d(
|
|
in_features, rank, kernel_size=kernel_size, stride=stride, padding=padding, bias=False
|
|
)
|
|
# according to the official kohya_ss trainer kernel_size are always fixed for the up layer
|
|
# # see: https://github.com/bmaltais/kohya_ss/blob/2accb1305979ba62f5077a23aabac23b4c37e935/networks/lora_diffusers.py#L129
|
|
self.up = nn.Conv2d(rank, out_features, kernel_size=(1, 1), stride=(1, 1), bias=False)
|
|
|
|
# This value has the same meaning as the `--network_alpha` option in the kohya-ss trainer script.
|
|
# See https://github.com/darkstorm2150/sd-scripts/blob/main/docs/train_network_README-en.md#execute-learning
|
|
self.network_alpha = network_alpha
|
|
self.rank = rank
|
|
|
|
nn.init.normal_(self.down.weight, std=1 / rank)
|
|
nn.init.zeros_(self.up.weight)
|
|
|
|
def forward(self, hidden_states):
|
|
orig_dtype = hidden_states.dtype
|
|
dtype = self.down.weight.dtype
|
|
|
|
down_hidden_states = self.down(hidden_states.to(dtype))
|
|
up_hidden_states = self.up(down_hidden_states)
|
|
|
|
if self.network_alpha is not None:
|
|
up_hidden_states *= self.network_alpha / self.rank
|
|
|
|
return up_hidden_states.to(orig_dtype)
|
|
|
|
|
|
class LoRACompatibleConv(nn.Conv2d):
|
|
"""
|
|
A convolutional layer that can be used with LoRA.
|
|
"""
|
|
|
|
def __init__(
|
|
self, *args, lora_layer: Optional[LoRAConv2dLayer] = None, scale: float = 1.0, **kwargs
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
self.lora_layer = lora_layer
|
|
self.scale = scale
|
|
|
|
def set_lora_layer(self, lora_layer: Optional[LoRAConv2dLayer]):
|
|
self.lora_layer = lora_layer
|
|
|
|
def _fuse_lora(self, lora_scale=1.0):
|
|
if self.lora_layer is None:
|
|
return
|
|
|
|
dtype, device = self.weight.data.dtype, self.weight.data.device
|
|
|
|
w_orig = self.weight.data.float()
|
|
w_up = self.lora_layer.up.weight.data.float()
|
|
w_down = self.lora_layer.down.weight.data.float()
|
|
|
|
if self.lora_layer.network_alpha is not None:
|
|
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
|
|
|
|
fusion = torch.mm(w_up.flatten(start_dim=1), w_down.flatten(start_dim=1))
|
|
fusion = fusion.reshape((w_orig.shape))
|
|
fused_weight = w_orig + (lora_scale * fusion)
|
|
self.weight.data = fused_weight.to(device=device, dtype=dtype)
|
|
|
|
# we can drop the lora layer now
|
|
self.lora_layer = None
|
|
|
|
# offload the up and down matrices to CPU to not blow the memory
|
|
self.w_up = w_up.cpu()
|
|
self.w_down = w_down.cpu()
|
|
self._lora_scale = lora_scale
|
|
|
|
def _unfuse_lora(self):
|
|
if not (hasattr(self, "w_up") and hasattr(self, "w_down")):
|
|
return
|
|
|
|
fused_weight = self.weight.data
|
|
dtype, device = fused_weight.data.dtype, fused_weight.data.device
|
|
|
|
self.w_up = self.w_up.to(device=device).float()
|
|
self.w_down = self.w_down.to(device).float()
|
|
|
|
fusion = torch.mm(self.w_up.flatten(start_dim=1), self.w_down.flatten(start_dim=1))
|
|
fusion = fusion.reshape((fused_weight.shape))
|
|
unfused_weight = fused_weight.float() - (self._lora_scale * fusion)
|
|
self.weight.data = unfused_weight.to(device=device, dtype=dtype)
|
|
|
|
self.w_up = None
|
|
self.w_down = None
|
|
|
|
def forward(self, hidden_states, scale: float = None):
|
|
if scale is None:
|
|
scale = self.scale
|
|
if self.lora_layer is None:
|
|
# make sure to the functional Conv2D function as otherwise torch.compile's graph will break
|
|
# see: https://github.com/huggingface/diffusers/pull/4315
|
|
return F.conv2d(
|
|
hidden_states,
|
|
self.weight,
|
|
self.bias,
|
|
self.stride,
|
|
self.padding,
|
|
self.dilation,
|
|
self.groups,
|
|
)
|
|
else:
|
|
return super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
|
|
|
|
|
|
class LoRACompatibleLinear(nn.Linear):
|
|
"""
|
|
A Linear layer that can be used with LoRA.
|
|
"""
|
|
|
|
def __init__(
|
|
self, *args, lora_layer: Optional[LoRALinearLayer] = None, scale: float = 1.0, **kwargs
|
|
):
|
|
super().__init__(*args, **kwargs)
|
|
self.lora_layer = lora_layer
|
|
self.scale = scale
|
|
|
|
def set_lora_layer(self, lora_layer: Optional[LoRALinearLayer]):
|
|
self.lora_layer = lora_layer
|
|
|
|
def _fuse_lora(self, lora_scale=1.0):
|
|
if self.lora_layer is None:
|
|
return
|
|
|
|
dtype, device = self.weight.data.dtype, self.weight.data.device
|
|
|
|
w_orig = self.weight.data.float()
|
|
w_up = self.lora_layer.up.weight.data.float()
|
|
w_down = self.lora_layer.down.weight.data.float()
|
|
|
|
if self.lora_layer.network_alpha is not None:
|
|
w_up = w_up * self.lora_layer.network_alpha / self.lora_layer.rank
|
|
|
|
fused_weight = w_orig + (lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0])
|
|
self.weight.data = fused_weight.to(device=device, dtype=dtype)
|
|
|
|
# we can drop the lora layer now
|
|
self.lora_layer = None
|
|
|
|
# offload the up and down matrices to CPU to not blow the memory
|
|
self.w_up = w_up.cpu()
|
|
self.w_down = w_down.cpu()
|
|
self._lora_scale = lora_scale
|
|
|
|
def _unfuse_lora(self):
|
|
if not (hasattr(self, "w_up") and hasattr(self, "w_down")):
|
|
return
|
|
|
|
fused_weight = self.weight.data
|
|
dtype, device = fused_weight.dtype, fused_weight.device
|
|
|
|
w_up = self.w_up.to(device=device).float()
|
|
w_down = self.w_down.to(device).float()
|
|
|
|
unfused_weight = fused_weight.float() - (
|
|
self._lora_scale * torch.bmm(w_up[None, :], w_down[None, :])[0]
|
|
)
|
|
self.weight.data = unfused_weight.to(device=device, dtype=dtype)
|
|
|
|
self.w_up = None
|
|
self.w_down = None
|
|
|
|
def forward(self, hidden_states, scale: float = None):
|
|
if scale is None:
|
|
scale = self.scale
|
|
if self.lora_layer is None:
|
|
out = super().forward(hidden_states)
|
|
return out
|
|
else:
|
|
out = super().forward(hidden_states) + (scale * self.lora_layer(hidden_states))
|
|
return out
|
|
|
|
|
|
def _find_children(
|
|
model,
|
|
search_class: List[Type[nn.Module]] = [nn.Linear],
|
|
):
|
|
"""
|
|
Find all modules of a certain class (or union of classes).
|
|
|
|
Returns all matching modules, along with the parent of those moduless and the
|
|
names they are referenced by.
|
|
"""
|
|
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
|
for parent in model.modules():
|
|
for name, module in parent.named_children():
|
|
if any([isinstance(module, _class) for _class in search_class]):
|
|
yield parent, name, module
|
|
|
|
|
|
def _find_modules_v2(
|
|
model,
|
|
ancestor_class: Optional[Set[str]] = None,
|
|
search_class: List[Type[nn.Module]] = [nn.Linear],
|
|
exclude_children_of: Optional[List[Type[nn.Module]]] = [
|
|
LoRACompatibleLinear,
|
|
LoRACompatibleConv,
|
|
LoRALinearLayer,
|
|
LoRAConv2dLayer,
|
|
],
|
|
):
|
|
"""
|
|
Find all modules of a certain class (or union of classes) that are direct or
|
|
indirect descendants of other modules of a certain class (or union of classes).
|
|
|
|
Returns all matching modules, along with the parent of those moduless and the
|
|
names they are referenced by.
|
|
"""
|
|
|
|
# Get the targets we should replace all linears under
|
|
if ancestor_class is not None:
|
|
ancestors = (
|
|
module for module in model.modules() if module.__class__.__name__ in ancestor_class
|
|
)
|
|
else:
|
|
# this, incase you want to naively iterate over all modules.
|
|
ancestors = [module for module in model.modules()]
|
|
|
|
# For each target find every linear_class module that isn't a child of a LoraInjectedLinear
|
|
for ancestor in ancestors:
|
|
for fullname, module in ancestor.named_modules():
|
|
if any([isinstance(module, _class) for _class in search_class]):
|
|
# Find the direct parent if this is a descendant, not a child, of target
|
|
*path, name = fullname.split(".")
|
|
parent = ancestor
|
|
flag = False
|
|
while path:
|
|
try:
|
|
parent = parent.get_submodule(path.pop(0))
|
|
except:
|
|
flag = True
|
|
break
|
|
if flag:
|
|
continue
|
|
# Skip this linear if it's a child of a LoraInjectedLinear
|
|
if exclude_children_of and any(
|
|
[isinstance(parent, _class) for _class in exclude_children_of]
|
|
):
|
|
continue
|
|
# Otherwise, yield it
|
|
yield parent, name, module
|
|
|
|
|
|
_find_modules = _find_modules_v2
|
|
|
|
|
|
def inject_trainable_lora_extended(
|
|
model: nn.Module,
|
|
target_replace_module: Set[str] = None,
|
|
rank: int = 4,
|
|
scale: float = 1.0,
|
|
):
|
|
for _module, name, _child_module in _find_modules(
|
|
model, target_replace_module, search_class=[nn.Linear, nn.Conv2d]
|
|
):
|
|
if _child_module.__class__ == nn.Linear:
|
|
weight = _child_module.weight
|
|
bias = _child_module.bias
|
|
lora_layer = LoRALinearLayer(
|
|
in_features=_child_module.in_features,
|
|
out_features=_child_module.out_features,
|
|
rank=rank,
|
|
)
|
|
_tmp = (
|
|
LoRACompatibleLinear(
|
|
_child_module.in_features,
|
|
_child_module.out_features,
|
|
lora_layer=lora_layer,
|
|
scale=scale,
|
|
)
|
|
.to(weight.dtype)
|
|
.to(weight.device)
|
|
)
|
|
_tmp.weight = weight
|
|
if bias is not None:
|
|
_tmp.bias = bias
|
|
elif _child_module.__class__ == nn.Conv2d:
|
|
weight = _child_module.weight
|
|
bias = _child_module.bias
|
|
lora_layer = LoRAConv2dLayer(
|
|
in_features=_child_module.in_channels,
|
|
out_features=_child_module.out_channels,
|
|
rank=rank,
|
|
kernel_size=_child_module.kernel_size,
|
|
stride=_child_module.stride,
|
|
padding=_child_module.padding,
|
|
)
|
|
_tmp = (
|
|
LoRACompatibleConv(
|
|
_child_module.in_channels,
|
|
_child_module.out_channels,
|
|
kernel_size=_child_module.kernel_size,
|
|
stride=_child_module.stride,
|
|
padding=_child_module.padding,
|
|
lora_layer=lora_layer,
|
|
scale=scale,
|
|
)
|
|
.to(weight.dtype)
|
|
.to(weight.device)
|
|
)
|
|
_tmp.weight = weight
|
|
if bias is not None:
|
|
_tmp.bias = bias
|
|
else:
|
|
continue
|
|
|
|
_module._modules[name] = _tmp
|
|
# print('injecting lora layer to', _module, name)
|
|
|
|
return
|
|
|
|
|
|
def update_lora_scale(
|
|
model: nn.Module,
|
|
target_module: Set[str] = None,
|
|
scale: float = 1.0,
|
|
):
|
|
for _module, name, _child_module in _find_modules(
|
|
model, target_module, search_class=[LoRACompatibleLinear, LoRACompatibleConv]
|
|
):
|
|
_child_module.scale = scale
|
|
|
|
return
|