mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
262 lines
9.6 KiB
Python
262 lines
9.6 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
from torch import einsum
|
|
from einops import rearrange
|
|
|
|
|
|
class VectorQuantizer2(nn.Module):
|
|
"""
|
|
Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly
|
|
avoids costly matrix multiplications and allows for post-hoc remapping of indices.
|
|
"""
|
|
|
|
# NOTE: due to a bug the beta term was applied to the wrong term. for
|
|
# backwards compatibility we use the buggy version by default, but you can
|
|
# specify legacy=False to fix it.
|
|
def __init__(
|
|
self,
|
|
n_e,
|
|
e_dim,
|
|
beta,
|
|
remap=None,
|
|
unknown_index="random",
|
|
sane_index_shape=False,
|
|
legacy=True,
|
|
):
|
|
super().__init__()
|
|
self.n_e = n_e
|
|
self.e_dim = e_dim
|
|
self.beta = beta
|
|
self.legacy = legacy
|
|
|
|
self.embedding = nn.Embedding(self.n_e, self.e_dim)
|
|
self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e)
|
|
|
|
self.remap = remap
|
|
if self.remap is not None:
|
|
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
|
self.re_embed = self.used.shape[0]
|
|
self.unknown_index = unknown_index # "random" or "extra" or integer
|
|
if self.unknown_index == "extra":
|
|
self.unknown_index = self.re_embed
|
|
self.re_embed = self.re_embed + 1
|
|
print(
|
|
f"Remapping {self.n_e} indices to {self.re_embed} indices. "
|
|
f"Using {self.unknown_index} for unknown indices."
|
|
)
|
|
else:
|
|
self.re_embed = n_e
|
|
|
|
self.sane_index_shape = sane_index_shape
|
|
|
|
def remap_to_used(self, inds):
|
|
ishape = inds.shape
|
|
assert len(ishape) > 1
|
|
inds = inds.reshape(ishape[0], -1)
|
|
used = self.used.to(inds)
|
|
match = (inds[:, :, None] == used[None, None, ...]).long()
|
|
new = match.argmax(-1)
|
|
unknown = match.sum(2) < 1
|
|
if self.unknown_index == "random":
|
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(
|
|
device=new.device
|
|
)
|
|
else:
|
|
new[unknown] = self.unknown_index
|
|
return new.reshape(ishape)
|
|
|
|
def unmap_to_all(self, inds):
|
|
ishape = inds.shape
|
|
assert len(ishape) > 1
|
|
inds = inds.reshape(ishape[0], -1)
|
|
used = self.used.to(inds)
|
|
if self.re_embed > self.used.shape[0]: # extra token
|
|
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
|
return back.reshape(ishape)
|
|
|
|
def forward(self, z, temp=None, rescale_logits=False, return_logits=False):
|
|
assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel"
|
|
assert rescale_logits == False, "Only for interface compatible with Gumbel"
|
|
assert return_logits == False, "Only for interface compatible with Gumbel"
|
|
# reshape z -> (batch, height, width, channel) and flatten
|
|
z = rearrange(z, "b c h w -> b h w c").contiguous()
|
|
z_flattened = z.view(-1, self.e_dim)
|
|
# distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z
|
|
|
|
d = (
|
|
torch.sum(z_flattened**2, dim=1, keepdim=True)
|
|
+ torch.sum(self.embedding.weight**2, dim=1)
|
|
- 2
|
|
* torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n"))
|
|
)
|
|
|
|
min_encoding_indices = torch.argmin(d, dim=1)
|
|
z_q = self.embedding(min_encoding_indices).view(z.shape)
|
|
perplexity = None
|
|
min_encodings = None
|
|
|
|
# compute loss for embedding
|
|
if not self.legacy:
|
|
loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean(
|
|
(z_q - z.detach()) ** 2
|
|
)
|
|
else:
|
|
loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean(
|
|
(z_q - z.detach()) ** 2
|
|
)
|
|
|
|
# preserve gradients
|
|
z_q = z + (z_q - z).detach()
|
|
|
|
# reshape back to match original input shape
|
|
z_q = rearrange(z_q, "b h w c -> b c h w").contiguous()
|
|
|
|
if self.remap is not None:
|
|
min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis
|
|
min_encoding_indices = self.remap_to_used(min_encoding_indices)
|
|
min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten
|
|
|
|
if self.sane_index_shape:
|
|
min_encoding_indices = min_encoding_indices.reshape(
|
|
z_q.shape[0], z_q.shape[2], z_q.shape[3]
|
|
)
|
|
|
|
return z_q, loss, (perplexity, min_encodings, min_encoding_indices)
|
|
|
|
def get_codebook_entry(self, indices, shape):
|
|
# shape specifying (batch, height, width, channel)
|
|
if self.remap is not None:
|
|
indices = indices.reshape(shape[0], -1) # add batch axis
|
|
indices = self.unmap_to_all(indices)
|
|
indices = indices.reshape(-1) # flatten again
|
|
|
|
# get quantized latent vectors
|
|
z_q = self.embedding(indices)
|
|
|
|
if shape is not None:
|
|
z_q = z_q.view(shape)
|
|
# reshape back to match original input shape
|
|
z_q = z_q.permute(0, 3, 1, 2).contiguous()
|
|
|
|
return z_q
|
|
|
|
|
|
class GumbelQuantize(nn.Module):
|
|
"""
|
|
credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!)
|
|
Gumbel Softmax trick quantizer
|
|
Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016
|
|
https://arxiv.org/abs/1611.01144
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
num_hiddens,
|
|
embedding_dim,
|
|
n_embed,
|
|
straight_through=True,
|
|
kl_weight=5e-4,
|
|
temp_init=1.0,
|
|
use_vqinterface=True,
|
|
remap=None,
|
|
unknown_index="random",
|
|
):
|
|
super().__init__()
|
|
|
|
self.embedding_dim = embedding_dim
|
|
self.n_embed = n_embed
|
|
|
|
self.straight_through = straight_through
|
|
self.temperature = temp_init
|
|
self.kl_weight = kl_weight
|
|
|
|
self.proj = nn.Conv2d(num_hiddens, n_embed, 1)
|
|
self.embed = nn.Embedding(n_embed, embedding_dim)
|
|
|
|
self.use_vqinterface = use_vqinterface
|
|
|
|
self.remap = remap
|
|
if self.remap is not None:
|
|
self.register_buffer("used", torch.tensor(np.load(self.remap)))
|
|
self.re_embed = self.used.shape[0]
|
|
self.unknown_index = unknown_index # "random" or "extra" or integer
|
|
if self.unknown_index == "extra":
|
|
self.unknown_index = self.re_embed
|
|
self.re_embed = self.re_embed + 1
|
|
print(
|
|
f"Remapping {self.n_embed} indices to {self.re_embed} indices. "
|
|
f"Using {self.unknown_index} for unknown indices."
|
|
)
|
|
else:
|
|
self.re_embed = n_embed
|
|
|
|
def remap_to_used(self, inds):
|
|
ishape = inds.shape
|
|
assert len(ishape) > 1
|
|
inds = inds.reshape(ishape[0], -1)
|
|
used = self.used.to(inds)
|
|
match = (inds[:, :, None] == used[None, None, ...]).long()
|
|
new = match.argmax(-1)
|
|
unknown = match.sum(2) < 1
|
|
if self.unknown_index == "random":
|
|
new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to(
|
|
device=new.device
|
|
)
|
|
else:
|
|
new[unknown] = self.unknown_index
|
|
return new.reshape(ishape)
|
|
|
|
def unmap_to_all(self, inds):
|
|
ishape = inds.shape
|
|
assert len(ishape) > 1
|
|
inds = inds.reshape(ishape[0], -1)
|
|
used = self.used.to(inds)
|
|
if self.re_embed > self.used.shape[0]: # extra token
|
|
inds[inds >= self.used.shape[0]] = 0 # simply set to zero
|
|
back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds)
|
|
return back.reshape(ishape)
|
|
|
|
def forward(self, z, temp=None, return_logits=False):
|
|
# force hard = True when we are in eval mode, as we must quantize. actually, always true seems to work
|
|
hard = self.straight_through if self.training else True
|
|
temp = self.temperature if temp is None else temp
|
|
|
|
logits = self.proj(z)
|
|
if self.remap is not None:
|
|
# continue only with used logits
|
|
full_zeros = torch.zeros_like(logits)
|
|
logits = logits[:, self.used, ...]
|
|
|
|
soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard)
|
|
if self.remap is not None:
|
|
# go back to all entries but unused set to zero
|
|
full_zeros[:, self.used, ...] = soft_one_hot
|
|
soft_one_hot = full_zeros
|
|
z_q = einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight)
|
|
|
|
# + kl divergence to the prior loss
|
|
qy = F.softmax(logits, dim=1)
|
|
diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean()
|
|
|
|
ind = soft_one_hot.argmax(dim=1)
|
|
if self.remap is not None:
|
|
ind = self.remap_to_used(ind)
|
|
if self.use_vqinterface:
|
|
if return_logits:
|
|
return z_q, diff, (None, None, ind), logits
|
|
return z_q, diff, (None, None, ind)
|
|
return z_q, diff, ind
|
|
|
|
def get_codebook_entry(self, indices, shape):
|
|
b, h, w, c = shape
|
|
assert b * h * w == indices.shape[0]
|
|
indices = rearrange(indices, "(b h w) -> b h w", b=b, h=h, w=w)
|
|
if self.remap is not None:
|
|
indices = self.unmap_to_all(indices)
|
|
one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float()
|
|
z_q = einsum("b n h w, n d -> b d h w", one_hot, self.embed.weight)
|
|
return z_q
|