mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
383 lines
12 KiB
Python
383 lines
12 KiB
Python
# pytorch_diffusion + derived encoder decoder
|
|
import math
|
|
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
|
|
|
|
def get_timestep_embedding(timesteps, embedding_dim):
|
|
"""
|
|
This matches the implementation in Denoising Diffusion Probabilistic Models:
|
|
From Fairseq.
|
|
Build sinusoidal embeddings.
|
|
This matches the implementation in tensor2tensor, but differs slightly
|
|
from the description in Section 3.5 of "Attention Is All You Need".
|
|
"""
|
|
assert len(timesteps.shape) == 1
|
|
|
|
half_dim = embedding_dim // 2
|
|
emb = math.log(10000) / (half_dim - 1)
|
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb)
|
|
emb = emb.to(device=timesteps.device)
|
|
emb = timesteps.float()[:, None] * emb[None, :]
|
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
|
if embedding_dim % 2 == 1: # zero pad
|
|
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
|
return emb
|
|
|
|
|
|
def nonlinearity(x):
|
|
# swish
|
|
return x * torch.sigmoid(x)
|
|
|
|
|
|
class SpatialNorm(nn.Module):
|
|
def __init__(
|
|
self,
|
|
f_channels,
|
|
zq_channels,
|
|
norm_layer=nn.GroupNorm,
|
|
freeze_norm_layer=False,
|
|
add_conv=False,
|
|
**norm_layer_params,
|
|
):
|
|
super().__init__()
|
|
self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params)
|
|
if freeze_norm_layer:
|
|
for p in self.norm_layer.parameters:
|
|
p.requires_grad = False
|
|
self.add_conv = add_conv
|
|
if self.add_conv:
|
|
self.conv = nn.Conv2d(zq_channels, zq_channels, kernel_size=3, stride=1, padding=1)
|
|
self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
|
|
self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0)
|
|
|
|
def forward(self, f, zq):
|
|
f_size = f.shape[-2:]
|
|
zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest")
|
|
if self.add_conv:
|
|
zq = self.conv(zq)
|
|
norm_f = self.norm_layer(f)
|
|
new_f = norm_f * self.conv_y(zq) + self.conv_b(zq)
|
|
return new_f
|
|
|
|
|
|
def Normalize(in_channels, zq_ch, add_conv):
|
|
return SpatialNorm(
|
|
in_channels,
|
|
zq_ch,
|
|
norm_layer=nn.GroupNorm,
|
|
freeze_norm_layer=False,
|
|
add_conv=add_conv,
|
|
num_groups=32,
|
|
eps=1e-6,
|
|
affine=True,
|
|
)
|
|
|
|
|
|
class Upsample(nn.Module):
|
|
def __init__(self, in_channels, with_conv):
|
|
super().__init__()
|
|
self.with_conv = with_conv
|
|
if self.with_conv:
|
|
self.conv = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
|
|
def forward(self, x):
|
|
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
|
|
if self.with_conv:
|
|
x = self.conv(x)
|
|
return x
|
|
|
|
|
|
class Downsample(nn.Module):
|
|
def __init__(self, in_channels, with_conv):
|
|
super().__init__()
|
|
self.with_conv = with_conv
|
|
if self.with_conv:
|
|
# no asymmetric padding in torch conv, must do it ourselves
|
|
self.conv = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=3, stride=2, padding=0
|
|
)
|
|
|
|
def forward(self, x):
|
|
if self.with_conv:
|
|
pad = (0, 1, 0, 1)
|
|
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
|
|
x = self.conv(x)
|
|
else:
|
|
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
|
|
return x
|
|
|
|
|
|
class ResnetBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
in_channels,
|
|
out_channels=None,
|
|
conv_shortcut=False,
|
|
dropout,
|
|
temb_channels=512,
|
|
zq_ch=None,
|
|
add_conv=False,
|
|
):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
out_channels = in_channels if out_channels is None else out_channels
|
|
self.out_channels = out_channels
|
|
self.use_conv_shortcut = conv_shortcut
|
|
|
|
self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv)
|
|
self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
if temb_channels > 0:
|
|
self.temb_proj = torch.nn.Linear(temb_channels, out_channels)
|
|
self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv)
|
|
self.dropout = torch.nn.Dropout(dropout)
|
|
self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1)
|
|
if self.in_channels != self.out_channels:
|
|
if self.use_conv_shortcut:
|
|
self.conv_shortcut = torch.nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
|
)
|
|
else:
|
|
self.nin_shortcut = torch.nn.Conv2d(
|
|
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def forward(self, x, temb, zq):
|
|
h = x
|
|
h = self.norm1(h, zq)
|
|
h = nonlinearity(h)
|
|
h = self.conv1(h)
|
|
|
|
if temb is not None:
|
|
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None]
|
|
|
|
h = self.norm2(h, zq)
|
|
h = nonlinearity(h)
|
|
h = self.dropout(h)
|
|
h = self.conv2(h)
|
|
|
|
if self.in_channels != self.out_channels:
|
|
if self.use_conv_shortcut:
|
|
x = self.conv_shortcut(x)
|
|
else:
|
|
x = self.nin_shortcut(x)
|
|
|
|
return x + h
|
|
|
|
|
|
class AttnBlock(nn.Module):
|
|
def __init__(self, in_channels, zq_ch=None, add_conv=False):
|
|
super().__init__()
|
|
self.in_channels = in_channels
|
|
|
|
self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv)
|
|
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
|
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
|
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
|
|
self.proj_out = torch.nn.Conv2d(
|
|
in_channels, in_channels, kernel_size=1, stride=1, padding=0
|
|
)
|
|
|
|
def forward(self, x, zq):
|
|
h_ = x
|
|
h_ = self.norm(h_, zq)
|
|
q = self.q(h_)
|
|
k = self.k(h_)
|
|
v = self.v(h_)
|
|
|
|
# compute attention
|
|
b, c, h, w = q.shape
|
|
q = q.reshape(b, c, h * w)
|
|
q = q.permute(0, 2, 1) # b,hw,c
|
|
k = k.reshape(b, c, h * w) # b,c,hw
|
|
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
|
|
w_ = w_ * (int(c) ** (-0.5))
|
|
w_ = torch.nn.functional.softmax(w_, dim=2)
|
|
|
|
# attend to values
|
|
v = v.reshape(b, c, h * w)
|
|
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q)
|
|
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
|
|
h_ = h_.reshape(b, c, h, w)
|
|
|
|
h_ = self.proj_out(h_)
|
|
|
|
return x + h_
|
|
|
|
|
|
class MOVQDecoder(nn.Module):
|
|
def __init__(
|
|
self,
|
|
*,
|
|
ch,
|
|
out_ch,
|
|
ch_mult=(1, 2, 4, 8),
|
|
num_res_blocks,
|
|
attn_resolutions,
|
|
dropout=0.0,
|
|
resamp_with_conv=True,
|
|
in_channels,
|
|
resolution,
|
|
z_channels,
|
|
give_pre_end=False,
|
|
zq_ch=None,
|
|
add_conv=False,
|
|
**ignorekwargs,
|
|
):
|
|
super().__init__()
|
|
self.ch = ch
|
|
self.temb_ch = 0
|
|
self.num_resolutions = len(ch_mult)
|
|
self.num_res_blocks = num_res_blocks
|
|
self.resolution = resolution
|
|
self.in_channels = in_channels
|
|
self.give_pre_end = give_pre_end
|
|
|
|
# compute in_ch_mult, block_in and curr_res at lowest res
|
|
in_ch_mult = (1,) + tuple(ch_mult)
|
|
block_in = ch * ch_mult[self.num_resolutions - 1]
|
|
curr_res = resolution // 2 ** (self.num_resolutions - 1)
|
|
self.z_shape = (1, z_channels, curr_res, curr_res)
|
|
print(
|
|
"Working with z of shape {} = {} dimensions.".format(
|
|
self.z_shape, np.prod(self.z_shape)
|
|
)
|
|
)
|
|
|
|
# z to block_in
|
|
self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1)
|
|
|
|
# middle
|
|
self.mid = nn.Module()
|
|
self.mid.block_1 = ResnetBlock(
|
|
in_channels=block_in,
|
|
out_channels=block_in,
|
|
temb_channels=self.temb_ch,
|
|
dropout=dropout,
|
|
zq_ch=zq_ch,
|
|
add_conv=add_conv,
|
|
)
|
|
self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv)
|
|
self.mid.block_2 = ResnetBlock(
|
|
in_channels=block_in,
|
|
out_channels=block_in,
|
|
temb_channels=self.temb_ch,
|
|
dropout=dropout,
|
|
zq_ch=zq_ch,
|
|
add_conv=add_conv,
|
|
)
|
|
|
|
# upsampling
|
|
self.up = nn.ModuleList()
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
block = nn.ModuleList()
|
|
attn = nn.ModuleList()
|
|
block_out = ch * ch_mult[i_level]
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
block.append(
|
|
ResnetBlock(
|
|
in_channels=block_in,
|
|
out_channels=block_out,
|
|
temb_channels=self.temb_ch,
|
|
dropout=dropout,
|
|
zq_ch=zq_ch,
|
|
add_conv=add_conv,
|
|
)
|
|
)
|
|
block_in = block_out
|
|
if curr_res in attn_resolutions:
|
|
attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv))
|
|
up = nn.Module()
|
|
up.block = block
|
|
up.attn = attn
|
|
if i_level != 0:
|
|
up.upsample = Upsample(block_in, resamp_with_conv)
|
|
curr_res = curr_res * 2
|
|
self.up.insert(0, up) # prepend to get consistent order
|
|
|
|
# end
|
|
self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv)
|
|
self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1)
|
|
|
|
def forward(self, z, zq):
|
|
# assert z.shape[1:] == self.z_shape[1:]
|
|
self.last_z_shape = z.shape
|
|
|
|
# timestep embedding
|
|
temb = None
|
|
|
|
# z to block_in
|
|
h = self.conv_in(z)
|
|
|
|
# middle
|
|
h = self.mid.block_1(h, temb, zq)
|
|
h = self.mid.attn_1(h, zq)
|
|
h = self.mid.block_2(h, temb, zq)
|
|
|
|
# upsampling
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
h = self.up[i_level].block[i_block](h, temb, zq)
|
|
if len(self.up[i_level].attn) > 0:
|
|
h = self.up[i_level].attn[i_block](h, zq)
|
|
if i_level != 0:
|
|
h = self.up[i_level].upsample(h)
|
|
|
|
# end
|
|
if self.give_pre_end:
|
|
return h
|
|
|
|
h = self.norm_out(h, zq)
|
|
h = nonlinearity(h)
|
|
h = self.conv_out(h)
|
|
return h
|
|
|
|
def forward_with_features_output(self, z, zq):
|
|
# assert z.shape[1:] == self.z_shape[1:]
|
|
self.last_z_shape = z.shape
|
|
|
|
# timestep embedding
|
|
temb = None
|
|
output_features = {}
|
|
|
|
# z to block_in
|
|
h = self.conv_in(z)
|
|
output_features["conv_in"] = h
|
|
|
|
# middle
|
|
h = self.mid.block_1(h, temb, zq)
|
|
output_features["mid_block_1"] = h
|
|
h = self.mid.attn_1(h, zq)
|
|
output_features["mid_attn_1"] = h
|
|
h = self.mid.block_2(h, temb, zq)
|
|
output_features["mid_block_2"] = h
|
|
|
|
# upsampling
|
|
for i_level in reversed(range(self.num_resolutions)):
|
|
for i_block in range(self.num_res_blocks + 1):
|
|
h = self.up[i_level].block[i_block](h, temb, zq)
|
|
output_features[f"up_{i_level}_block_{i_block}"] = h
|
|
if len(self.up[i_level].attn) > 0:
|
|
h = self.up[i_level].attn[i_block](h, zq)
|
|
output_features[f"up_{i_level}_attn_{i_block}"] = h
|
|
if i_level != 0:
|
|
h = self.up[i_level].upsample(h)
|
|
output_features[f"up_{i_level}_upsample"] = h
|
|
|
|
# end
|
|
if self.give_pre_end:
|
|
return h
|
|
|
|
h = self.norm_out(h, zq)
|
|
output_features["norm_out"] = h
|
|
h = nonlinearity(h)
|
|
output_features["nonlinearity"] = h
|
|
h = self.conv_out(h)
|
|
output_features["conv_out"] = h
|
|
|
|
return h, output_features
|