Yuxuan Zhang 39c6562dc8 format
2025-03-22 15:14:06 +08:00

737 lines
24 KiB
Python

from typing import Any, Union
from math import log2
from beartype import beartype
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.autograd import grad as torch_grad
from torch.cuda.amp import autocast
import torchvision
from torchvision.models import VGG16_Weights
from einops import rearrange, einsum, repeat
from einops.layers.torch import Rearrange
from kornia.filters import filter3d
from ..magvit2_pytorch import Residual, FeedForward, LinearSpaceAttention
from .lpips import LPIPS
from sgm.modules.autoencoding.vqvae.movq_enc_3d import CausalConv3d, DownSample3D
from sgm.util import instantiate_from_config
def exists(v):
return v is not None
def pair(t):
return t if isinstance(t, tuple) else (t, t)
def leaky_relu(p=0.1):
return nn.LeakyReLU(p)
def hinge_discr_loss(fake, real):
return (F.relu(1 + fake) + F.relu(1 - real)).mean()
def hinge_gen_loss(fake):
return -fake.mean()
@autocast(enabled=False)
@beartype
def grad_layer_wrt_loss(loss: Tensor, layer: nn.Parameter):
return torch_grad(
outputs=loss, inputs=layer, grad_outputs=torch.ones_like(loss), retain_graph=True
)[0].detach()
def pick_video_frame(video, frame_indices):
batch, device = video.shape[0], video.device
video = rearrange(video, "b c f ... -> b f c ...")
batch_indices = torch.arange(batch, device=device)
batch_indices = rearrange(batch_indices, "b -> b 1")
images = video[batch_indices, frame_indices]
images = rearrange(images, "b 1 c ... -> b c ...")
return images
def gradient_penalty(images, output):
batch_size = images.shape[0]
gradients = torch_grad(
outputs=output,
inputs=images,
grad_outputs=torch.ones(output.size(), device=images.device),
create_graph=True,
retain_graph=True,
only_inputs=True,
)[0]
gradients = rearrange(gradients, "b ... -> b (...)")
return ((gradients.norm(2, dim=1) - 1) ** 2).mean()
# discriminator with anti-aliased downsampling (blurpool Zhang et al.)
class Blur(nn.Module):
def __init__(self):
super().__init__()
f = torch.Tensor([1, 2, 1])
self.register_buffer("f", f)
def forward(self, x, space_only=False, time_only=False):
assert not (space_only and time_only)
f = self.f
if space_only:
f = einsum("i, j -> i j", f, f)
f = rearrange(f, "... -> 1 1 ...")
elif time_only:
f = rearrange(f, "f -> 1 f 1 1")
else:
f = einsum("i, j, k -> i j k", f, f, f)
f = rearrange(f, "... -> 1 ...")
is_images = x.ndim == 4
if is_images:
x = rearrange(x, "b c h w -> b c 1 h w")
out = filter3d(x, f, normalized=True)
if is_images:
out = rearrange(out, "b c 1 h w -> b c h w")
return out
class DiscriminatorBlock(nn.Module):
def __init__(self, input_channels, filters, downsample=True, antialiased_downsample=True):
super().__init__()
self.conv_res = nn.Conv2d(input_channels, filters, 1, stride=(2 if downsample else 1))
self.net = nn.Sequential(
nn.Conv2d(input_channels, filters, 3, padding=1),
leaky_relu(),
nn.Conv2d(filters, filters, 3, padding=1),
leaky_relu(),
)
self.maybe_blur = Blur() if antialiased_downsample else None
self.downsample = (
nn.Sequential(
Rearrange("b c (h p1) (w p2) -> b (c p1 p2) h w", p1=2, p2=2),
nn.Conv2d(filters * 4, filters, 1),
)
if downsample
else None
)
def forward(self, x):
res = self.conv_res(x)
x = self.net(x)
if exists(self.downsample):
if exists(self.maybe_blur):
x = self.maybe_blur(x, space_only=True)
x = self.downsample(x)
x = (x + res) * (2**-0.5)
return x
class Discriminator(nn.Module):
@beartype
def __init__(
self,
*,
dim,
image_size,
channels=3,
max_dim=512,
attn_heads=8,
attn_dim_head=32,
linear_attn_dim_head=8,
linear_attn_heads=16,
ff_mult=4,
antialiased_downsample=False,
):
super().__init__()
image_size = pair(image_size)
min_image_resolution = min(image_size)
num_layers = int(log2(min_image_resolution) - 2)
blocks = []
layer_dims = [channels] + [(dim * 4) * (2**i) for i in range(num_layers + 1)]
layer_dims = [min(layer_dim, max_dim) for layer_dim in layer_dims]
layer_dims_in_out = tuple(zip(layer_dims[:-1], layer_dims[1:]))
blocks = []
attn_blocks = []
image_resolution = min_image_resolution
for ind, (in_chan, out_chan) in enumerate(layer_dims_in_out):
num_layer = ind + 1
is_not_last = ind != (len(layer_dims_in_out) - 1)
block = DiscriminatorBlock(
in_chan,
out_chan,
downsample=is_not_last,
antialiased_downsample=antialiased_downsample,
)
attn_block = nn.Sequential(
Residual(
LinearSpaceAttention(
dim=out_chan, heads=linear_attn_heads, dim_head=linear_attn_dim_head
)
),
Residual(FeedForward(dim=out_chan, mult=ff_mult, images=True)),
)
blocks.append(nn.ModuleList([block, attn_block]))
image_resolution //= 2
self.blocks = nn.ModuleList(blocks)
dim_last = layer_dims[-1]
downsample_factor = 2**num_layers
last_fmap_size = tuple(map(lambda n: n // downsample_factor, image_size))
latent_dim = last_fmap_size[0] * last_fmap_size[1] * dim_last
self.to_logits = nn.Sequential(
nn.Conv2d(dim_last, dim_last, 3, padding=1),
leaky_relu(),
Rearrange("b ... -> b (...)"),
nn.Linear(latent_dim, 1),
Rearrange("b 1 -> b"),
)
def forward(self, x):
for block, attn_block in self.blocks:
x = block(x)
x = attn_block(x)
return self.to_logits(x)
class DiscriminatorBlock3D(nn.Module):
def __init__(
self,
input_channels,
filters,
antialiased_downsample=True,
):
super().__init__()
self.conv_res = nn.Conv3d(input_channels, filters, 1, stride=2)
self.net = nn.Sequential(
nn.Conv3d(input_channels, filters, 3, padding=1),
leaky_relu(),
nn.Conv3d(filters, filters, 3, padding=1),
leaky_relu(),
)
self.maybe_blur = Blur() if antialiased_downsample else None
self.downsample = nn.Sequential(
Rearrange("b c (f p1) (h p2) (w p3) -> b (c p1 p2 p3) f h w", p1=2, p2=2, p3=2),
nn.Conv3d(filters * 8, filters, 1),
)
def forward(self, x):
res = self.conv_res(x)
x = self.net(x)
if exists(self.downsample):
if exists(self.maybe_blur):
x = self.maybe_blur(x, space_only=True)
x = self.downsample(x)
x = (x + res) * (2**-0.5)
return x
class DiscriminatorBlock3DWithfirstframe(nn.Module):
def __init__(
self,
input_channels,
filters,
antialiased_downsample=True,
pad_mode="first",
):
super().__init__()
self.downsample_res = DownSample3D(
in_channels=input_channels,
out_channels=filters,
with_conv=True,
compress_time=True,
)
self.net = nn.Sequential(
CausalConv3d(input_channels, filters, kernel_size=3, pad_mode=pad_mode),
leaky_relu(),
CausalConv3d(filters, filters, kernel_size=3, pad_mode=pad_mode),
leaky_relu(),
)
self.maybe_blur = Blur() if antialiased_downsample else None
self.downsample = DownSample3D(
in_channels=filters,
out_channels=filters,
with_conv=True,
compress_time=True,
)
def forward(self, x):
res = self.downsample_res(x)
x = self.net(x)
if exists(self.downsample):
if exists(self.maybe_blur):
x = self.maybe_blur(x, space_only=True)
x = self.downsample(x)
x = (x + res) * (2**-0.5)
return x
class Discriminator3D(nn.Module):
@beartype
def __init__(
self,
*,
dim,
image_size,
frame_num,
channels=3,
max_dim=512,
linear_attn_dim_head=8,
linear_attn_heads=16,
ff_mult=4,
antialiased_downsample=False,
):
super().__init__()
image_size = pair(image_size)
min_image_resolution = min(image_size)
num_layers = int(log2(min_image_resolution) - 2)
temporal_num_layers = int(log2(frame_num))
self.temporal_num_layers = temporal_num_layers
layer_dims = [channels] + [(dim * 4) * (2**i) for i in range(num_layers + 1)]
layer_dims = [min(layer_dim, max_dim) for layer_dim in layer_dims]
layer_dims_in_out = tuple(zip(layer_dims[:-1], layer_dims[1:]))
blocks = []
image_resolution = min_image_resolution
frame_resolution = frame_num
for ind, (in_chan, out_chan) in enumerate(layer_dims_in_out):
num_layer = ind + 1
is_not_last = ind != (len(layer_dims_in_out) - 1)
if ind < temporal_num_layers:
block = DiscriminatorBlock3D(
in_chan,
out_chan,
antialiased_downsample=antialiased_downsample,
)
blocks.append(block)
frame_resolution //= 2
else:
block = DiscriminatorBlock(
in_chan,
out_chan,
downsample=is_not_last,
antialiased_downsample=antialiased_downsample,
)
attn_block = nn.Sequential(
Residual(
LinearSpaceAttention(
dim=out_chan, heads=linear_attn_heads, dim_head=linear_attn_dim_head
)
),
Residual(FeedForward(dim=out_chan, mult=ff_mult, images=True)),
)
blocks.append(nn.ModuleList([block, attn_block]))
image_resolution //= 2
self.blocks = nn.ModuleList(blocks)
dim_last = layer_dims[-1]
downsample_factor = 2**num_layers
last_fmap_size = tuple(map(lambda n: n // downsample_factor, image_size))
latent_dim = last_fmap_size[0] * last_fmap_size[1] * dim_last
self.to_logits = nn.Sequential(
nn.Conv2d(dim_last, dim_last, 3, padding=1),
leaky_relu(),
Rearrange("b ... -> b (...)"),
nn.Linear(latent_dim, 1),
Rearrange("b 1 -> b"),
)
def forward(self, x):
for i, layer in enumerate(self.blocks):
if i < self.temporal_num_layers:
x = layer(x)
if i == self.temporal_num_layers - 1:
x = rearrange(x, "b c f h w -> (b f) c h w")
else:
block, attn_block = layer
x = block(x)
x = attn_block(x)
return self.to_logits(x)
class Discriminator3DWithfirstframe(nn.Module):
@beartype
def __init__(
self,
*,
dim,
image_size,
frame_num,
channels=3,
max_dim=512,
linear_attn_dim_head=8,
linear_attn_heads=16,
ff_mult=4,
antialiased_downsample=False,
):
super().__init__()
image_size = pair(image_size)
min_image_resolution = min(image_size)
num_layers = int(log2(min_image_resolution) - 2)
temporal_num_layers = int(log2(frame_num))
self.temporal_num_layers = temporal_num_layers
layer_dims = [channels] + [(dim * 4) * (2**i) for i in range(num_layers + 1)]
layer_dims = [min(layer_dim, max_dim) for layer_dim in layer_dims]
layer_dims_in_out = tuple(zip(layer_dims[:-1], layer_dims[1:]))
blocks = []
image_resolution = min_image_resolution
frame_resolution = frame_num
for ind, (in_chan, out_chan) in enumerate(layer_dims_in_out):
num_layer = ind + 1
is_not_last = ind != (len(layer_dims_in_out) - 1)
if ind < temporal_num_layers:
block = DiscriminatorBlock3DWithfirstframe(
in_chan,
out_chan,
antialiased_downsample=antialiased_downsample,
)
blocks.append(block)
frame_resolution //= 2
else:
block = DiscriminatorBlock(
in_chan,
out_chan,
downsample=is_not_last,
antialiased_downsample=antialiased_downsample,
)
attn_block = nn.Sequential(
Residual(
LinearSpaceAttention(
dim=out_chan, heads=linear_attn_heads, dim_head=linear_attn_dim_head
)
),
Residual(FeedForward(dim=out_chan, mult=ff_mult, images=True)),
)
blocks.append(nn.ModuleList([block, attn_block]))
image_resolution //= 2
self.blocks = nn.ModuleList(blocks)
dim_last = layer_dims[-1]
downsample_factor = 2**num_layers
last_fmap_size = tuple(map(lambda n: n // downsample_factor, image_size))
latent_dim = last_fmap_size[0] * last_fmap_size[1] * dim_last
self.to_logits = nn.Sequential(
nn.Conv2d(dim_last, dim_last, 3, padding=1),
leaky_relu(),
Rearrange("b ... -> b (...)"),
nn.Linear(latent_dim, 1),
Rearrange("b 1 -> b"),
)
def forward(self, x):
for i, layer in enumerate(self.blocks):
if i < self.temporal_num_layers:
x = layer(x)
if i == self.temporal_num_layers - 1:
x = x.mean(dim=2)
# x = rearrange(x, "b c f h w -> (b f) c h w")
else:
block, attn_block = layer
x = block(x)
x = attn_block(x)
return self.to_logits(x)
class VideoAutoencoderLoss(nn.Module):
def __init__(
self,
disc_start,
perceptual_weight=1,
adversarial_loss_weight=0,
multiscale_adversarial_loss_weight=0,
grad_penalty_loss_weight=0,
quantizer_aux_loss_weight=0,
vgg_weights=VGG16_Weights.DEFAULT,
discr_kwargs=None,
discr_3d_kwargs=None,
):
super().__init__()
self.disc_start = disc_start
self.perceptual_weight = perceptual_weight
self.adversarial_loss_weight = adversarial_loss_weight
self.multiscale_adversarial_loss_weight = multiscale_adversarial_loss_weight
self.grad_penalty_loss_weight = grad_penalty_loss_weight
self.quantizer_aux_loss_weight = quantizer_aux_loss_weight
if self.perceptual_weight > 0:
self.perceptual_model = LPIPS().eval()
# self.vgg = torchvision.models.vgg16(pretrained = True)
# self.vgg.requires_grad_(False)
# if self.adversarial_loss_weight > 0:
# self.discr = Discriminator(**discr_kwargs)
# else:
# self.discr = None
# if self.multiscale_adversarial_loss_weight > 0:
# self.multiscale_discrs = nn.ModuleList([*multiscale_discrs])
# else:
# self.multiscale_discrs = None
if discr_kwargs is not None:
self.discr = Discriminator(**discr_kwargs)
else:
self.discr = None
if discr_3d_kwargs is not None:
# self.discr_3d = Discriminator3D(**discr_3d_kwargs)
self.discr_3d = instantiate_from_config(discr_3d_kwargs)
else:
self.discr_3d = None
# self.multiscale_discrs = nn.ModuleList([*multiscale_discrs])
self.register_buffer("zero", torch.tensor(0.0), persistent=False)
def get_trainable_params(self) -> Any:
params = []
if self.discr is not None:
params += list(self.discr.parameters())
if self.discr_3d is not None:
params += list(self.discr_3d.parameters())
# if self.multiscale_discrs is not None:
# for discr in self.multiscale_discrs:
# params += list(discr.parameters())
return params
def get_trainable_parameters(self) -> Any:
return self.get_trainable_params()
def forward(
self,
inputs,
reconstructions,
optimizer_idx,
global_step,
aux_losses=None,
last_layer=None,
split="train",
):
batch, channels, frames = inputs.shape[:3]
if optimizer_idx == 0:
recon_loss = F.mse_loss(inputs, reconstructions)
if self.perceptual_weight > 0:
frame_indices = torch.randn((batch, frames)).topk(1, dim=-1).indices
input_frames = pick_video_frame(inputs, frame_indices)
recon_frames = pick_video_frame(reconstructions, frame_indices)
perceptual_loss = self.perceptual_model(
input_frames.contiguous(), recon_frames.contiguous()
).mean()
else:
perceptual_loss = self.zero
if (
global_step >= self.disc_start
or not self.training
or self.adversarial_loss_weight == 0
):
gen_loss = self.zero
adaptive_weight = 0
else:
# frame_indices = torch.randn((batch, frames)).topk(1, dim = -1).indices
# recon_video_frames = pick_video_frame(reconstructions, frame_indices)
# fake_logits = self.discr(recon_video_frames)
fake_logits = self.discr_3d(reconstructions)
gen_loss = hinge_gen_loss(fake_logits)
adaptive_weight = 1
if self.perceptual_weight > 0 and last_layer is not None:
norm_grad_wrt_perceptual_loss = grad_layer_wrt_loss(
perceptual_loss, last_layer
).norm(p=2)
norm_grad_wrt_gen_loss = grad_layer_wrt_loss(gen_loss, last_layer).norm(p=2)
adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(
min=1e-3
)
adaptive_weight.clamp_(max=1e3)
if torch.isnan(adaptive_weight).any():
adaptive_weight = 1
# multiscale discriminator losses
# multiscale_gen_losses = []
# multiscale_gen_adaptive_weights = []
# if self.multiscale_adversarial_loss_weight > 0:
# if not exists(recon_video_frames):
# frame_indices = torch.randn((batch, frames)).topk(1, dim = -1).indices
# recon_video_frames = pick_video_frame(reconstructions, frame_indices)
# for discr in self.multiscale_discrs:
# fake_logits = recon_video_frames
# multiscale_gen_loss = hinge_gen_loss(fake_logits)
# multiscale_gen_losses.append(multiscale_gen_loss)
# multiscale_adaptive_weight = 1.
# if exists(norm_grad_wrt_perceptual_loss):
# norm_grad_wrt_gen_loss = grad_layer_wrt_loss(multiscale_gen_loss, last_layer).norm(p = 2)
# multiscale_adaptive_weight = norm_grad_wrt_perceptual_loss / norm_grad_wrt_gen_loss.clamp(min = 1e-5)
# multiscale_adaptive_weight.clamp_(max = 1e3)
# multiscale_gen_adaptive_weights.append(multiscale_adaptive_weight)
# weighted_multiscale_gen_losses = sum(loss * weight for loss, weight in zip(multiscale_gen_losses, multiscale_gen_adaptive_weights))
# else:
# weighted_multiscale_gen_losses = self.zero
if aux_losses is None:
aux_losses = self.zero
total_loss = (
recon_loss
+ aux_losses * self.quantizer_aux_loss_weight
+ perceptual_loss * self.perceptual_weight
+ gen_loss * self.adversarial_loss_weight
)
# gen_loss * adaptive_weight * self.adversarial_loss_weight + \
# weighted_multiscale_gen_losses * self.multiscale_adversarial_loss_weight
log = {
"{}/total_loss".format(split): total_loss.detach(),
"{}/recon_loss".format(split): recon_loss.detach(),
"{}/perceptual_loss".format(split): perceptual_loss.detach(),
"{}/gen_loss".format(split): gen_loss.detach(),
"{}/aux_losses".format(split): aux_losses.detach(),
# "{}/weighted_multiscale_gen_losses".format(split): weighted_multiscale_gen_losses.detach(),
"{}/adaptive_weight".format(split): adaptive_weight,
# "{}/multiscale_adaptive_weights".format(split): sum(multiscale_gen_adaptive_weights),
}
return total_loss, log
if optimizer_idx == 1:
# frame_indices = torch.randn((batch, frames)).topk(1, dim = -1).indices
# real = pick_video_frame(inputs, frame_indices)
# fake = pick_video_frame(reconstructions, frame_indices)
# apply_gradient_penalty = self.grad_penalty_loss_weight > 0
# if apply_gradient_penalty:
# real = real.requires_grad_()
# real_logits = self.discr(real)
# fake_logits = self.discr(fake.detach())
apply_gradient_penalty = self.grad_penalty_loss_weight > 0
if apply_gradient_penalty:
inputs = inputs.requires_grad_()
real_logits = self.discr_3d(inputs)
fake_logits = self.discr_3d(reconstructions.detach())
discr_loss = hinge_discr_loss(fake_logits, real_logits)
# # multiscale discriminators
# multiscale_discr_losses = []
# if self.multiscale_adversarial_loss_weight > 0:
# for discr in self.multiscale_discrs:
# multiscale_real_logits = discr(inputs)
# multiscale_fake_logits = discr(reconstructions.detach())
# multiscale_discr_loss = hinge_discr_loss(multiscale_fake_logits, multiscale_real_logits)
# multiscale_discr_losses.append(multiscale_discr_loss)
# else:
# multiscale_discr_losses.append(self.zero)
# gradient penalty
if apply_gradient_penalty:
# gradient_penalty_loss = gradient_penalty(real, real_logits)
gradient_penalty_loss = gradient_penalty(inputs, real_logits)
else:
gradient_penalty_loss = self.zero
total_loss = discr_loss + self.grad_penalty_loss_weight * gradient_penalty_loss
# self.grad_penalty_loss_weight * gradient_penalty_loss + \
# sum(multiscale_discr_losses) * self.multiscale_adversarial_loss_weight
log = {
"{}/total_disc_loss".format(split): total_loss.detach(),
"{}/discr_loss".format(split): discr_loss.detach(),
"{}/grad_penalty_loss".format(split): gradient_penalty_loss.detach(),
# "{}/multiscale_discr_loss".format(split): sum(multiscale_discr_losses).detach(),
"{}/logits_real".format(split): real_logits.detach().mean(),
"{}/logits_fake".format(split): fake_logits.detach().mean(),
}
return total_loss, log