mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
161 lines
5.1 KiB
Python
161 lines
5.1 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from .warplayer import warp
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias=True,
|
|
),
|
|
nn.PReLU(out_planes),
|
|
)
|
|
|
|
|
|
def conv_bn(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
|
|
return nn.Sequential(
|
|
nn.Conv2d(
|
|
in_planes,
|
|
out_planes,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
dilation=dilation,
|
|
bias=False,
|
|
),
|
|
nn.BatchNorm2d(out_planes),
|
|
nn.PReLU(out_planes),
|
|
)
|
|
|
|
|
|
class IFBlock(nn.Module):
|
|
def __init__(self, in_planes, c=64):
|
|
super(IFBlock, self).__init__()
|
|
self.conv0 = nn.Sequential(
|
|
conv(in_planes, c // 2, 3, 2, 1),
|
|
conv(c // 2, c, 3, 2, 1),
|
|
)
|
|
self.convblock0 = nn.Sequential(conv(c, c), conv(c, c))
|
|
self.convblock1 = nn.Sequential(conv(c, c), conv(c, c))
|
|
self.convblock2 = nn.Sequential(conv(c, c), conv(c, c))
|
|
self.convblock3 = nn.Sequential(conv(c, c), conv(c, c))
|
|
self.conv1 = nn.Sequential(
|
|
nn.ConvTranspose2d(c, c // 2, 4, 2, 1),
|
|
nn.PReLU(c // 2),
|
|
nn.ConvTranspose2d(c // 2, 4, 4, 2, 1),
|
|
)
|
|
self.conv2 = nn.Sequential(
|
|
nn.ConvTranspose2d(c, c // 2, 4, 2, 1),
|
|
nn.PReLU(c // 2),
|
|
nn.ConvTranspose2d(c // 2, 1, 4, 2, 1),
|
|
)
|
|
|
|
def forward(self, x, flow, scale=1):
|
|
x = F.interpolate(
|
|
x,
|
|
scale_factor=1.0 / scale,
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
recompute_scale_factor=False,
|
|
)
|
|
flow = (
|
|
F.interpolate(
|
|
flow,
|
|
scale_factor=1.0 / scale,
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
recompute_scale_factor=False,
|
|
)
|
|
* 1.0
|
|
/ scale
|
|
)
|
|
feat = self.conv0(torch.cat((x, flow), 1))
|
|
feat = self.convblock0(feat) + feat
|
|
feat = self.convblock1(feat) + feat
|
|
feat = self.convblock2(feat) + feat
|
|
feat = self.convblock3(feat) + feat
|
|
flow = self.conv1(feat)
|
|
mask = self.conv2(feat)
|
|
flow = (
|
|
F.interpolate(
|
|
flow,
|
|
scale_factor=scale,
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
recompute_scale_factor=False,
|
|
)
|
|
* scale
|
|
)
|
|
mask = F.interpolate(
|
|
mask,
|
|
scale_factor=scale,
|
|
mode="bilinear",
|
|
align_corners=False,
|
|
recompute_scale_factor=False,
|
|
)
|
|
return flow, mask
|
|
|
|
|
|
class IFNet(nn.Module):
|
|
def __init__(self):
|
|
super(IFNet, self).__init__()
|
|
self.block0 = IFBlock(7 + 4, c=90)
|
|
self.block1 = IFBlock(7 + 4, c=90)
|
|
self.block2 = IFBlock(7 + 4, c=90)
|
|
self.block_tea = IFBlock(10 + 4, c=90)
|
|
# self.contextnet = Contextnet()
|
|
# self.unet = Unet()
|
|
|
|
def forward(self, x, scale_list=[4, 2, 1], training=False):
|
|
if training == False:
|
|
channel = x.shape[1] // 2
|
|
img0 = x[:, :channel]
|
|
img1 = x[:, channel:]
|
|
flow_list = []
|
|
merged = []
|
|
mask_list = []
|
|
warped_img0 = img0
|
|
warped_img1 = img1
|
|
flow = (x[:, :4]).detach() * 0
|
|
mask = (x[:, :1]).detach() * 0
|
|
loss_cons = 0
|
|
block = [self.block0, self.block1, self.block2]
|
|
for i in range(3):
|
|
f0, m0 = block[i](
|
|
torch.cat((warped_img0[:, :3], warped_img1[:, :3], mask), 1),
|
|
flow,
|
|
scale=scale_list[i],
|
|
)
|
|
f1, m1 = block[i](
|
|
torch.cat((warped_img1[:, :3], warped_img0[:, :3], -mask), 1),
|
|
torch.cat((flow[:, 2:4], flow[:, :2]), 1),
|
|
scale=scale_list[i],
|
|
)
|
|
flow = flow + (f0 + torch.cat((f1[:, 2:4], f1[:, :2]), 1)) / 2
|
|
mask = mask + (m0 + (-m1)) / 2
|
|
mask_list.append(mask)
|
|
flow_list.append(flow)
|
|
warped_img0 = warp(img0, flow[:, :2])
|
|
warped_img1 = warp(img1, flow[:, 2:4])
|
|
merged.append((warped_img0, warped_img1))
|
|
"""
|
|
c0 = self.contextnet(img0, flow[:, :2])
|
|
c1 = self.contextnet(img1, flow[:, 2:4])
|
|
tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
|
|
res = tmp[:, 1:4] * 2 - 1
|
|
"""
|
|
for i in range(3):
|
|
mask_list[i] = torch.sigmoid(mask_list[i])
|
|
merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
|
|
# merged[i] = torch.clamp(merged[i] + res, 0, 1)
|
|
return flow_list, mask_list[2], merged
|