mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 19:41:59 +08:00
135 lines
5.7 KiB
Python
135 lines
5.7 KiB
Python
"""
|
||
This script demonstrates how to generate a video from a text prompt using CogVideoX with 🤗Huggingface Diffusers Pipeline.
|
||
|
||
Note:
|
||
This script requires the `diffusers>=0.30.0` library to be installed, after `diffusers 0.31.0` release,
|
||
need to update.
|
||
|
||
Run the script:
|
||
$ python cli_demo.py --prompt "A girl ridding a bike." --model_path THUDM/CogVideoX-2b
|
||
|
||
"""
|
||
|
||
import gc
|
||
import argparse
|
||
import tempfile
|
||
from typing import Union, List
|
||
|
||
import PIL
|
||
import imageio
|
||
import numpy as np
|
||
import torch
|
||
from diffusers import CogVideoXPipeline, CogVideoXDDIMScheduler
|
||
|
||
def export_to_video_imageio(
|
||
video_frames: Union[List[np.ndarray], List[PIL.Image.Image]], output_video_path: str = None, fps: int = 8
|
||
) -> str:
|
||
"""
|
||
Export the video frames to a video file using imageio lib to Avoid "green screen" issue (for example CogVideoX)
|
||
"""
|
||
if output_video_path is None:
|
||
output_video_path = tempfile.NamedTemporaryFile(suffix=".mp4").name
|
||
if isinstance(video_frames[0], PIL.Image.Image):
|
||
video_frames = [np.array(frame) for frame in video_frames]
|
||
with imageio.get_writer(output_video_path, fps=fps) as writer:
|
||
for frame in video_frames:
|
||
writer.append_data(frame)
|
||
return output_video_path
|
||
|
||
|
||
def generate_video(
|
||
prompt: str,
|
||
model_path: str,
|
||
output_path: str = "./output.mp4",
|
||
num_inference_steps: int = 50,
|
||
guidance_scale: float = 6.0,
|
||
num_videos_per_prompt: int = 1,
|
||
dtype: torch.dtype = torch.float16,
|
||
):
|
||
"""
|
||
Generates a video based on the given prompt and saves it to the specified path.
|
||
|
||
Parameters:
|
||
- prompt (str): The description of the video to be generated.
|
||
- model_path (str): The path of the pre-trained model to be used.
|
||
- output_path (str): The path where the generated video will be saved.
|
||
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
|
||
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
|
||
- num_videos_per_prompt (int): Number of videos to generate per prompt.
|
||
- dtype (torch.dtype): The data type for computation (default is torch.float16).
|
||
|
||
"""
|
||
|
||
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (float16).
|
||
# add device_map="balanced" in the from_pretrained function and remove the enable_model_cpu_offload()
|
||
# function to use Multi GPUs.
|
||
|
||
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype)
|
||
|
||
# 2. Set Scheduler.
|
||
# Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
|
||
# We recommend using `CogVideoXDDIMScheduler` for better results.
|
||
pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
||
|
||
# 3. Enable CPU offload for the model and reset the memory, enable tiling.
|
||
pipe.enable_model_cpu_offload()
|
||
|
||
gc.collect()
|
||
torch.cuda.empty_cache()
|
||
torch.cuda.reset_accumulated_memory_stats()
|
||
torch.cuda.reset_peak_memory_stats()
|
||
|
||
# Using with diffusers branch `main` to enable tiling. This will cost ONLY 12GB GPU memory.
|
||
# pipe.vae.enable_tiling()
|
||
|
||
# 4. Generate the video frames based on the prompt.
|
||
# `num_frames` is the Number of frames to generate.
|
||
# This is the default value for 6 seconds video and 8 fps,so 48 frames and will plus 1 frame for the first frame.
|
||
# for diffusers version `0.30.0`, this should be 48. and for `0.31.0` and after, this should be 49.
|
||
video = pipe(
|
||
prompt=prompt,
|
||
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
|
||
num_inference_steps=num_inference_steps, # Number of inference steps
|
||
num_frames=48, # Number of frames to generate,changed to 49 for diffusers version `0.31.0` and after.
|
||
guidance_scale=guidance_scale, # Guidance scale for classifier-free guidance
|
||
generator=torch.Generator().manual_seed(42), # Set the seed for reproducibility
|
||
).frames[0]
|
||
|
||
# 5. Export the generated frames to a video file. fps must be 8
|
||
export_to_video_imageio(video, output_path, fps=8)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
|
||
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
|
||
parser.add_argument(
|
||
"--model_path", type=str, default="THUDM/CogVideoX-2b", help="The path of the pre-trained model to be used"
|
||
)
|
||
parser.add_argument(
|
||
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
|
||
)
|
||
parser.add_argument(
|
||
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
|
||
)
|
||
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
|
||
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
|
||
parser.add_argument(
|
||
"--dtype", type=str, default="float16", help="The data type for computation (e.g., 'float16' or 'float32')"
|
||
)
|
||
|
||
args = parser.parse_args()
|
||
|
||
# Convert dtype argument to torch.dtype, NOT suggest BF16.
|
||
dtype = torch.float16 if args.dtype == "float16" else torch.float32
|
||
|
||
# main function to generate video.
|
||
generate_video(
|
||
prompt=args.prompt,
|
||
model_path=args.model_path,
|
||
output_path=args.output_path,
|
||
num_inference_steps=args.num_inference_steps,
|
||
guidance_scale=args.guidance_scale,
|
||
num_videos_per_prompt=args.num_videos_per_prompt,
|
||
dtype=dtype,
|
||
)
|