28 lines
769 B
Python

import torch
from pathlib import Path
from typing import List, Dict, Any
from pydantic import BaseModel, field_validator
class State(BaseModel):
model_config = {"arbitrary_types_allowed": True}
train_frames: int # user-defined training frames, **containing one image padding frame**
train_height: int
train_width: int
transformer_config: Dict[str, Any] = None
weight_dtype: torch.dtype = torch.float32
num_trainable_parameters: int = 0
overwrote_max_train_steps: bool = False
num_update_steps_per_epoch: int = 0
total_batch_size_count: int = 0
generator: torch.Generator | None = None
validation_prompts: List[str] = []
validation_images: List[Path | None] = []
validation_videos: List[Path | None] = []