mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-12-02 10:32:09 +08:00
795 lines
42 KiB
Python
795 lines
42 KiB
Python
import os
|
|
from random import randint
|
|
import subprocess
|
|
import tempfile
|
|
import random
|
|
import typing
|
|
from typing_extensions import Self
|
|
from deep_translator import GoogleTranslator
|
|
from cog import BasePredictor, Input, Path
|
|
|
|
import torch
|
|
import time
|
|
import logging,sys
|
|
import stat
|
|
from torchvision.utils import save_image
|
|
from icetk import icetk as tokenizer
|
|
import torch.distributed as dist
|
|
tokenizer.add_special_tokens(['<start_of_image>', '<start_of_english>', '<start_of_chinese>'])
|
|
|
|
from SwissArmyTransformer import get_args
|
|
from SwissArmyTransformer.data_utils import BinaryDataset, make_loaders
|
|
from SwissArmyTransformer.generation.sampling_strategies import BaseStrategy
|
|
from SwissArmyTransformer.generation.utils import timed_name, save_multiple_images, generate_continually
|
|
from SwissArmyTransformer.resources import auto_create
|
|
|
|
from models.cogvideo_cache_model import CogVideoCacheModel
|
|
from coglm_strategy import CoglmStrategy
|
|
|
|
|
|
|
|
|
|
def get_masks_and_position_ids_stage1(data, textlen, framelen):
|
|
# Extract batch size and sequence length.
|
|
tokens = data
|
|
seq_length = len(data[0])
|
|
# Attention mask (lower triangular).
|
|
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
|
|
attention_mask[:, :textlen, textlen:] = 0
|
|
attention_mask[:, textlen:, textlen:].tril_()
|
|
attention_mask.unsqueeze_(1)
|
|
# Unaligned version
|
|
position_ids = torch.zeros(seq_length, dtype=torch.long,
|
|
device=data.device)
|
|
torch.arange(textlen, out=position_ids[:textlen],
|
|
dtype=torch.long, device=data.device)
|
|
torch.arange(512, 512+seq_length-textlen, out=position_ids[textlen:],
|
|
dtype=torch.long, device=data.device)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
return tokens, attention_mask, position_ids
|
|
|
|
def get_masks_and_position_ids_stage2(data, textlen, framelen):
|
|
# Extract batch size and sequence length.
|
|
tokens = data
|
|
seq_length = len(data[0])
|
|
|
|
# Attention mask (lower triangular).
|
|
attention_mask = torch.ones((1, textlen+framelen, textlen+framelen), device=data.device)
|
|
attention_mask[:, :textlen, textlen:] = 0
|
|
attention_mask[:, textlen:, textlen:].tril_()
|
|
attention_mask.unsqueeze_(1)
|
|
|
|
# Unaligned version
|
|
position_ids = torch.zeros(seq_length, dtype=torch.long,
|
|
device=data.device)
|
|
torch.arange(textlen, out=position_ids[:textlen],
|
|
dtype=torch.long, device=data.device)
|
|
frame_num = (seq_length-textlen)//framelen
|
|
assert frame_num == 5
|
|
torch.arange(512, 512+framelen, out=position_ids[textlen:textlen+framelen],
|
|
dtype=torch.long, device=data.device)
|
|
torch.arange(512+framelen*2, 512+framelen*3, out=position_ids[textlen+framelen:textlen+framelen*2],
|
|
dtype=torch.long, device=data.device)
|
|
torch.arange(512+framelen*(frame_num-1), 512+framelen*frame_num, out=position_ids[textlen+framelen*2:textlen+framelen*3],
|
|
dtype=torch.long, device=data.device)
|
|
torch.arange(512+framelen*1, 512+framelen*2, out=position_ids[textlen+framelen*3:textlen+framelen*4],
|
|
dtype=torch.long, device=data.device)
|
|
torch.arange(512+framelen*3, 512+framelen*4, out=position_ids[textlen+framelen*4:textlen+framelen*5],
|
|
dtype=torch.long, device=data.device)
|
|
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
return tokens, attention_mask, position_ids
|
|
|
|
def my_update_mems(hiddens, mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len):
|
|
if hiddens is None:
|
|
return None, mems_indexs
|
|
mem_num = len(hiddens)
|
|
ret_mem = []
|
|
with torch.no_grad():
|
|
for id in range(mem_num):
|
|
if hiddens[id][0] is None:
|
|
ret_mem.append(None)
|
|
else:
|
|
if id == 0 and limited_spatial_channel_mem and mems_indexs[id]+hiddens[0][0].shape[1] >= text_len+frame_len:
|
|
if mems_indexs[id] == 0:
|
|
for layer, hidden in enumerate(hiddens[id]):
|
|
mems_buffers[id][layer, :, :text_len] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, :text_len]
|
|
new_mem_len_part2 = (mems_indexs[id]+hiddens[0][0].shape[1]-text_len)%frame_len
|
|
if new_mem_len_part2 > 0:
|
|
for layer, hidden in enumerate(hiddens[id]):
|
|
mems_buffers[id][layer, :, text_len:text_len+new_mem_len_part2] = hidden.expand(mems_buffers[id].shape[1], -1, -1)[:, -new_mem_len_part2:]
|
|
mems_indexs[id] = text_len+new_mem_len_part2
|
|
else:
|
|
for layer, hidden in enumerate(hiddens[id]):
|
|
mems_buffers[id][layer, :, mems_indexs[id]:mems_indexs[id]+hidden.shape[1]] = hidden.expand(mems_buffers[id].shape[1], -1, -1)
|
|
mems_indexs[id] += hidden.shape[1]
|
|
ret_mem.append(mems_buffers[id][:, :, :mems_indexs[id]])
|
|
return ret_mem, mems_indexs
|
|
|
|
|
|
def my_save_multiple_images(imgs, path, subdir, debug=True):
|
|
# imgs: list of tensor images
|
|
if debug:
|
|
imgs = torch.cat(imgs, dim=0)
|
|
logging.debug("\nSave to: ", path, flush=True)
|
|
save_image(imgs, path, normalize=True)
|
|
else:
|
|
logging.debug("\nSave to: ", path, flush=True)
|
|
single_frame_path = os.path.join(path, subdir)
|
|
os.makedirs(single_frame_path, exist_ok=True)
|
|
for i in range(len(imgs)):
|
|
save_image(imgs[i], os.path.join(single_frame_path, f'{str(i).rjust(4,"0")}.jpg'), normalize=True)
|
|
os.chmod(os.path.join(single_frame_path,f'{str(i).rjust(4,"0")}.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
|
|
save_image(torch.cat(imgs, dim=0), os.path.join(single_frame_path,f'frame_concat.jpg'), normalize=True)
|
|
os.chmod(os.path.join(single_frame_path,f'frame_concat.jpg'), stat.S_IRWXO+stat.S_IRWXG+stat.S_IRWXU)
|
|
|
|
def calc_next_tokens_frame_begin_id(text_len, frame_len, total_len):
|
|
# The fisrt token's position id of the frame that the next token belongs to;
|
|
if total_len < text_len:
|
|
return None
|
|
return (total_len-text_len)//frame_len * frame_len + text_len
|
|
|
|
def my_filling_sequence(
|
|
model,
|
|
args,
|
|
seq,
|
|
batch_size,
|
|
get_masks_and_position_ids,
|
|
text_len,
|
|
frame_len,
|
|
strategy=BaseStrategy(),
|
|
strategy2=BaseStrategy(),
|
|
mems=None,
|
|
log_text_attention_weights=0, # default to 0: no artificial change
|
|
mode_stage1=True,
|
|
enforce_no_swin=False,
|
|
guider_seq=None,
|
|
guider_text_len=0,
|
|
guidance_alpha=1,
|
|
limited_spatial_channel_mem=False, # 空间通道的存储限制在本帧内
|
|
**kw_args
|
|
):
|
|
'''
|
|
seq: [2, 3, 5, ..., -1(to be generated), -1, ...]
|
|
mems: [num_layers, batch_size, len_mems(index), mem_hidden_size]
|
|
cache, should be first mems.shape[1] parts of context_tokens.
|
|
mems are the first-level citizens here, but we don't assume what is memorized.
|
|
input mems are used when multi-phase generation.
|
|
'''
|
|
if guider_seq is not None:
|
|
logging.debug("Using Guidance In Inference")
|
|
if limited_spatial_channel_mem:
|
|
logging.debug("Limit spatial-channel's mem to current frame")
|
|
assert len(seq.shape) == 2
|
|
|
|
# building the initial tokens, attention_mask, and position_ids
|
|
actual_context_length = 0
|
|
|
|
while seq[-1][actual_context_length] >= 0: # the last seq has least given tokens
|
|
actual_context_length += 1 # [0, context_length-1] are given
|
|
assert actual_context_length > 0
|
|
current_frame_num = (actual_context_length-text_len) // frame_len
|
|
assert current_frame_num >= 0
|
|
context_length = text_len + current_frame_num * frame_len
|
|
|
|
tokens, attention_mask, position_ids = get_masks_and_position_ids(seq, text_len, frame_len)
|
|
tokens = tokens[..., :context_length]
|
|
input_tokens = tokens.clone()
|
|
|
|
if guider_seq is not None:
|
|
guider_index_delta = text_len - guider_text_len
|
|
guider_tokens, guider_attention_mask, guider_position_ids = get_masks_and_position_ids(guider_seq, guider_text_len, frame_len)
|
|
guider_tokens = guider_tokens[..., :context_length-guider_index_delta]
|
|
guider_input_tokens = guider_tokens.clone()
|
|
|
|
for fid in range(current_frame_num):
|
|
input_tokens[:, text_len+400*fid] = tokenizer['<start_of_image>']
|
|
if guider_seq is not None:
|
|
guider_input_tokens[:, guider_text_len+400*fid] = tokenizer['<start_of_image>']
|
|
|
|
attention_mask = attention_mask.type_as(next(model.parameters())) # if fp16
|
|
# initialize generation
|
|
counter = context_length - 1 # Last fixed index is ``counter''
|
|
index = 0 # Next forward starting index, also the length of cache.
|
|
mems_buffers_on_GPU = False
|
|
mems_indexs = [0, 0]
|
|
mems_len = [(400+74) if limited_spatial_channel_mem else 5*400+74, 5*400+74]
|
|
mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
|
|
for mem_len in mems_len]
|
|
|
|
|
|
if guider_seq is not None:
|
|
guider_attention_mask = guider_attention_mask.type_as(next(model.parameters())) # if fp16
|
|
guider_mems_buffers = [torch.zeros(args.num_layers, batch_size, mem_len, args.hidden_size*2, dtype=next(model.parameters()).dtype)
|
|
for mem_len in mems_len]
|
|
guider_mems_indexs = [0, 0]
|
|
guider_mems = None
|
|
|
|
torch.cuda.empty_cache()
|
|
# step-by-step generation
|
|
while counter < len(seq[0]) - 1:
|
|
# we have generated counter+1 tokens
|
|
# Now, we want to generate seq[counter + 1],
|
|
# token[:, index: counter+1] needs forwarding.
|
|
if index == 0:
|
|
group_size = 2 if (input_tokens.shape[0] == batch_size and not mode_stage1) else batch_size
|
|
|
|
logits_all = None
|
|
for batch_idx in range(0, input_tokens.shape[0], group_size):
|
|
logits, *output_per_layers = model(
|
|
input_tokens[batch_idx:batch_idx+group_size, index:],
|
|
position_ids[..., index: counter+1],
|
|
attention_mask, # TODO memlen
|
|
mems=mems,
|
|
text_len=text_len,
|
|
frame_len=frame_len,
|
|
counter=counter,
|
|
log_text_attention_weights=log_text_attention_weights,
|
|
enforce_no_swin=enforce_no_swin,
|
|
**kw_args
|
|
)
|
|
logits_all = torch.cat((logits_all, logits), dim=0) if logits_all is not None else logits
|
|
mem_kv01 = [[o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]]
|
|
next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(text_len, frame_len, mem_kv01[0][0].shape[1])
|
|
for id, mem_kv in enumerate(mem_kv01):
|
|
for layer, mem_kv_perlayer in enumerate(mem_kv):
|
|
if limited_spatial_channel_mem and id == 0:
|
|
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :text_len] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :text_len]
|
|
mems_buffers[id][layer, batch_idx:batch_idx+group_size, text_len:text_len+mem_kv_perlayer.shape[1]-next_tokens_frame_begin_id] =\
|
|
mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, next_tokens_frame_begin_id:]
|
|
else:
|
|
mems_buffers[id][layer, batch_idx:batch_idx+group_size, :mem_kv_perlayer.shape[1]] = mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
|
|
mems_indexs[0], mems_indexs[1] = mem_kv01[0][0].shape[1], mem_kv01[1][0].shape[1]
|
|
if limited_spatial_channel_mem:
|
|
mems_indexs[0] -= (next_tokens_frame_begin_id - text_len)
|
|
|
|
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
|
|
logits = logits_all
|
|
|
|
# Guider
|
|
if guider_seq is not None:
|
|
guider_logits_all = None
|
|
for batch_idx in range(0, guider_input_tokens.shape[0], group_size):
|
|
guider_logits, *guider_output_per_layers = model(
|
|
guider_input_tokens[batch_idx:batch_idx+group_size, max(index-guider_index_delta, 0):],
|
|
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
|
|
guider_attention_mask,
|
|
mems=guider_mems,
|
|
text_len=guider_text_len,
|
|
frame_len=frame_len,
|
|
counter=counter-guider_index_delta,
|
|
log_text_attention_weights=log_text_attention_weights,
|
|
enforce_no_swin=enforce_no_swin,
|
|
**kw_args
|
|
)
|
|
guider_logits_all = torch.cat((guider_logits_all, guider_logits), dim=0) if guider_logits_all is not None else guider_logits
|
|
guider_mem_kv01 = [[o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]]
|
|
for id, guider_mem_kv in enumerate(guider_mem_kv01):
|
|
for layer, guider_mem_kv_perlayer in enumerate(guider_mem_kv):
|
|
if limited_spatial_channel_mem and id == 0:
|
|
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_text_len] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, :guider_text_len]
|
|
guider_next_tokens_frame_begin_id = calc_next_tokens_frame_begin_id(guider_text_len, frame_len, guider_mem_kv_perlayer.shape[1])
|
|
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, guider_text_len:guider_text_len+guider_mem_kv_perlayer.shape[1]-guider_next_tokens_frame_begin_id] =\
|
|
guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)[:, guider_next_tokens_frame_begin_id:]
|
|
else:
|
|
guider_mems_buffers[id][layer, batch_idx:batch_idx+group_size, :guider_mem_kv_perlayer.shape[1]] = guider_mem_kv_perlayer.expand(min(group_size, input_tokens.shape[0]-batch_idx), -1, -1)
|
|
guider_mems_indexs[0], guider_mems_indexs[1] = guider_mem_kv01[0][0].shape[1], guider_mem_kv01[1][0].shape[1]
|
|
if limited_spatial_channel_mem:
|
|
guider_mems_indexs[0] -= (guider_next_tokens_frame_begin_id-guider_text_len)
|
|
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
|
|
guider_logits = guider_logits_all
|
|
else:
|
|
if not mems_buffers_on_GPU:
|
|
if not mode_stage1:
|
|
torch.cuda.empty_cache()
|
|
for idx, mem in enumerate(mems):
|
|
mems[idx] = mem.to(next(model.parameters()).device)
|
|
if guider_seq is not None:
|
|
for idx, mem in enumerate(guider_mems):
|
|
guider_mems[idx] = mem.to(next(model.parameters()).device)
|
|
else:
|
|
torch.cuda.empty_cache()
|
|
for idx, mem_buffer in enumerate(mems_buffers):
|
|
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
|
|
mems = [mems_buffers[id][:, :, :mems_indexs[id]] for id in range(2)]
|
|
if guider_seq is not None:
|
|
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
|
|
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
|
|
guider_mems = [guider_mems_buffers[id][:, :, :guider_mems_indexs[id]] for id in range(2)]
|
|
mems_buffers_on_GPU = True
|
|
|
|
logits, *output_per_layers = model(
|
|
input_tokens[:, index:],
|
|
position_ids[..., index: counter+1],
|
|
attention_mask, # TODO memlen
|
|
mems=mems,
|
|
text_len=text_len,
|
|
frame_len=frame_len,
|
|
counter=counter,
|
|
log_text_attention_weights=log_text_attention_weights,
|
|
enforce_no_swin=enforce_no_swin,
|
|
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
|
**kw_args
|
|
)
|
|
mem_kv0, mem_kv1 = [o['mem_kv'][0] for o in output_per_layers], [o['mem_kv'][1] for o in output_per_layers]
|
|
|
|
if guider_seq is not None:
|
|
guider_logits, *guider_output_per_layers = model(
|
|
guider_input_tokens[:, max(index-guider_index_delta, 0):],
|
|
guider_position_ids[..., max(index-guider_index_delta, 0): counter+1-guider_index_delta],
|
|
guider_attention_mask,
|
|
mems=guider_mems,
|
|
text_len=guider_text_len,
|
|
frame_len=frame_len,
|
|
counter=counter-guider_index_delta,
|
|
log_text_attention_weights=0,
|
|
enforce_no_swin=enforce_no_swin,
|
|
limited_spatial_channel_mem=limited_spatial_channel_mem,
|
|
**kw_args
|
|
)
|
|
guider_mem_kv0, guider_mem_kv1 = [o['mem_kv'][0] for o in guider_output_per_layers], [o['mem_kv'][1] for o in guider_output_per_layers]
|
|
|
|
if not mems_buffers_on_GPU:
|
|
torch.cuda.empty_cache()
|
|
for idx, mem_buffer in enumerate(mems_buffers):
|
|
mems_buffers[idx] = mem_buffer.to(next(model.parameters()).device)
|
|
if guider_seq is not None:
|
|
for idx, guider_mem_buffer in enumerate(guider_mems_buffers):
|
|
guider_mems_buffers[idx] = guider_mem_buffer.to(next(model.parameters()).device)
|
|
mems_buffers_on_GPU = True
|
|
|
|
mems, mems_indexs = my_update_mems([mem_kv0, mem_kv1], mems_buffers, mems_indexs, limited_spatial_channel_mem, text_len, frame_len)
|
|
if guider_seq is not None:
|
|
guider_mems, guider_mems_indexs = my_update_mems([guider_mem_kv0, guider_mem_kv1], guider_mems_buffers, guider_mems_indexs, limited_spatial_channel_mem, guider_text_len, frame_len)
|
|
|
|
|
|
counter += 1
|
|
index = counter
|
|
|
|
logits = logits[:, -1].expand(batch_size, -1) # [batch size, vocab size]
|
|
tokens = tokens.expand(batch_size, -1)
|
|
if guider_seq is not None:
|
|
guider_logits = guider_logits[:, -1].expand(batch_size, -1)
|
|
guider_tokens = guider_tokens.expand(batch_size, -1)
|
|
|
|
if seq[-1][counter].item() < 0:
|
|
# sampling
|
|
guided_logits = guider_logits+(logits-guider_logits)*guidance_alpha if guider_seq is not None else logits
|
|
if mode_stage1 and counter < text_len + 400:
|
|
tokens, mems = strategy.forward(guided_logits, tokens, mems)
|
|
else:
|
|
tokens, mems = strategy2.forward(guided_logits, tokens, mems)
|
|
if guider_seq is not None:
|
|
guider_tokens = torch.cat((guider_tokens, tokens[:, -1:]), dim=1)
|
|
|
|
if seq[0][counter].item() >= 0:
|
|
for si in range(seq.shape[0]):
|
|
if seq[si][counter].item() >= 0:
|
|
tokens[si, -1] = seq[si, counter]
|
|
if guider_seq is not None:
|
|
guider_tokens[si, -1] = guider_seq[si, counter-guider_index_delta]
|
|
|
|
else:
|
|
tokens = torch.cat((tokens, seq[:, counter:counter+1].clone().expand(tokens.shape[0], 1).to(device=tokens.device, dtype=tokens.dtype)), dim=1)
|
|
if guider_seq is not None:
|
|
guider_tokens = torch.cat((guider_tokens,
|
|
guider_seq[:, counter-guider_index_delta:counter+1-guider_index_delta]
|
|
.clone().expand(guider_tokens.shape[0], 1).to(device=guider_tokens.device, dtype=guider_tokens.dtype)), dim=1)
|
|
|
|
input_tokens = tokens.clone()
|
|
if guider_seq is not None:
|
|
guider_input_tokens = guider_tokens.clone()
|
|
if (index-text_len-1)//400 < (input_tokens.shape[-1]-text_len-1)//400:
|
|
boi_idx = ((index-text_len-1)//400 +1)*400+text_len
|
|
while boi_idx < input_tokens.shape[-1]:
|
|
input_tokens[:, boi_idx] = tokenizer['<start_of_image>']
|
|
if guider_seq is not None:
|
|
guider_input_tokens[:, boi_idx-guider_index_delta] = tokenizer['<start_of_image>']
|
|
boi_idx += 400
|
|
|
|
if strategy.is_done:
|
|
break
|
|
return strategy.finalize(tokens, mems)
|
|
|
|
class InferenceModel_Sequential(CogVideoCacheModel):
|
|
def __init__(self, args, transformer=None, parallel_output=True):
|
|
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=-1, cogvideo_stage=1)
|
|
# TODO: check it
|
|
|
|
def final_forward(self, logits, **kwargs):
|
|
logits_parallel = logits
|
|
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
|
|
return logits_parallel
|
|
|
|
class InferenceModel_Interpolate(CogVideoCacheModel):
|
|
def __init__(self, args, transformer=None, parallel_output=True):
|
|
super().__init__(args, transformer=transformer, parallel_output=parallel_output, window_size=10, cogvideo_stage=2)
|
|
# TODO: check it
|
|
|
|
def final_forward(self, logits, **kwargs):
|
|
logits_parallel = logits
|
|
logits_parallel = torch.nn.functional.linear(logits_parallel.float(), self.transformer.word_embeddings.weight[:20000].float())
|
|
return logits_parallel
|
|
|
|
class Predictor(BasePredictor):
|
|
def setup(self):
|
|
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S')
|
|
os.environ["SAT_HOME"] = "/sharefs/cogview-new"
|
|
args = get_args([
|
|
"--batch-size", "1",
|
|
"--tokenizer-type", "fake",
|
|
"--mode", "inference",
|
|
"--distributed-backend", "nccl",
|
|
"--model-parallel-size", "1",
|
|
"--fp16",
|
|
"--sandwich-ln",
|
|
"--temperature", "1.05",
|
|
"--max-inference-batch-size", "8"])
|
|
args.layout = [64,464,2064]
|
|
args.window_size = 10
|
|
args.additional_seqlen = 2000
|
|
args.cogvideo_stage = 1
|
|
args.do_train = False
|
|
args.parallel_size = 1
|
|
args.guidance_alpha = 3.0
|
|
args.generate_frame_num = 5
|
|
args.coglm_temperature = 0.89
|
|
args.coglm_temperature2 = 0.89
|
|
args.generate_frame_num = 5
|
|
args.stage1_max_inference_batch_size = -1
|
|
args.max_inference_batch_size = 8
|
|
args.top_k = 12
|
|
args.use_guidance_stage1 = True
|
|
args.use_guidance_stage2 = False
|
|
args.both_stages = True
|
|
args.device = torch.device('cuda')
|
|
|
|
self.translator = GoogleTranslator(source="en", target="zh-CN")
|
|
self.model_stage1, args = InferenceModel_Sequential.from_pretrained(args, 'cogvideo-stage1')
|
|
self.model_stage1.eval()
|
|
self.model_stage1 = self.model_stage1.cpu()
|
|
self.model_stage2, args = InferenceModel_Interpolate.from_pretrained(args, 'cogvideo-stage2')
|
|
self.model_stage2.eval()
|
|
self.model_stage2 = self.model_stage2.cpu()
|
|
|
|
# enable dsr if model exists
|
|
if os.path.exists('/sharefs/cogview-new/cogview2-dsr'):
|
|
subprocess.check_output("python setup.py develop", cwd="/src/Image-Local-Attention", shell=True)
|
|
sys.path.append('./Image-Local-Attention')
|
|
from sr_pipeline import DirectSuperResolution
|
|
dsr_path = auto_create('cogview2-dsr', path=None)
|
|
self.dsr = DirectSuperResolution(args, dsr_path,
|
|
max_bz=12, onCUDA=False)
|
|
else:
|
|
self.dsr = None
|
|
|
|
self.args = args
|
|
torch.cuda.empty_cache()
|
|
|
|
|
|
self.generate_frame_num = 5
|
|
|
|
|
|
@torch.no_grad()
|
|
def predict(
|
|
self,
|
|
prompt: str = Input(description="Prompt"),
|
|
seed: int = Input(description="Seed (-1 to use a random seed)", default=-1, le=(100000), ge=-1),
|
|
translate: bool = Input(
|
|
description="Translate prompt from English to Simplified Chinese (required if not entering Chinese text)",
|
|
default=True,
|
|
),
|
|
both_stages: bool = Input(
|
|
description="Run both stages (uncheck to run more quickly and output only a few frames)", default=True
|
|
),
|
|
use_guidance: bool = Input(description="Use stage 1 guidance (recommended)", default=True),
|
|
) -> typing.Iterator[Path]:
|
|
if translate:
|
|
prompt = self.translator.translate(prompt.strip())
|
|
|
|
if seed == -1:
|
|
seed = randint(0, 100000)
|
|
|
|
self.args.seed = seed
|
|
self.args.use_guidance_stage1 = use_guidance
|
|
self.prompt = prompt
|
|
self.args.both_stages = both_stages
|
|
|
|
for file in self.run():
|
|
yield Path(file)
|
|
torch.cuda.empty_cache()
|
|
return
|
|
@torch.no_grad()
|
|
def run(self):
|
|
torch.manual_seed(self.args.seed)
|
|
random.seed(self.args.seed)
|
|
|
|
invalid_slices = [slice(tokenizer.num_image_tokens, None)]
|
|
strategy_cogview2 = CoglmStrategy(invalid_slices,
|
|
temperature=1.0, top_k=16)
|
|
strategy_cogvideo = CoglmStrategy(invalid_slices,
|
|
temperature=self.args.temperature, top_k=self.args.top_k,
|
|
temperature2=self.args.coglm_temperature2)
|
|
|
|
workdir = tempfile.mkdtemp()
|
|
os.makedirs(f"{workdir}/output/stage1", exist_ok=True)
|
|
os.makedirs(f"{workdir}/output/stage2", exist_ok=True)
|
|
|
|
move_start_time = time.time()
|
|
logging.debug("moving stage 2 model to cpu")
|
|
self.model_stage2 = self.model_stage2.cpu()
|
|
torch.cuda.empty_cache()
|
|
logging.debug("moving stage 1 model to cuda")
|
|
self.model_stage1 = self.model_stage1.cuda()
|
|
logging.debug("moving in model1 takes time: {:.2f}".format(time.time()-move_start_time))
|
|
|
|
process_start_time = time.time()
|
|
args = self.args
|
|
use_guide = args.use_guidance_stage1
|
|
batch_size = 1
|
|
seq_text = self.prompt
|
|
video_raw_text = self.prompt
|
|
duration=4.0
|
|
video_guidance_text="视频"
|
|
image_text_suffix=" 高清摄影"
|
|
outputdir=f'{workdir}/output/stage1'
|
|
mbz = args.stage1_max_inference_batch_size if args.stage1_max_inference_batch_size > 0 else args.max_inference_batch_size
|
|
assert batch_size < mbz or batch_size % mbz == 0
|
|
frame_len = 400
|
|
|
|
# generate the first frame:
|
|
enc_text = tokenizer.encode(seq_text+image_text_suffix)
|
|
seq_1st = enc_text + [tokenizer['<start_of_image>']] + [-1]*400 # IV!! # test local!!! # test randboi!!!
|
|
logging.info("[Generating First Frame with CogView2]Raw text: {:s}".format(tokenizer.decode(enc_text)))
|
|
text_len_1st = len(seq_1st) - frame_len*1 - 1
|
|
|
|
seq_1st = torch.cuda.LongTensor(seq_1st, device=args.device).unsqueeze(0)
|
|
output_list_1st = []
|
|
for tim in range(max(batch_size // mbz, 1)):
|
|
start_time = time.time()
|
|
output_list_1st.append(
|
|
my_filling_sequence(self.model_stage1, args,seq_1st.clone(),
|
|
batch_size=min(batch_size, mbz),
|
|
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
|
|
text_len=text_len_1st,
|
|
frame_len=frame_len,
|
|
strategy=strategy_cogview2,
|
|
strategy2=strategy_cogvideo,
|
|
log_text_attention_weights=1.4,
|
|
enforce_no_swin=True,
|
|
mode_stage1=True,
|
|
)[0]
|
|
)
|
|
logging.info("[First Frame]Taken time {:.2f}\n".format(time.time() - start_time))
|
|
output_tokens_1st = torch.cat(output_list_1st, dim=0)
|
|
given_tokens = output_tokens_1st[:, text_len_1st+1:text_len_1st+401].unsqueeze(1) # given_tokens.shape: [bs, frame_num, 400]
|
|
|
|
# generate subsequent frames:
|
|
total_frames = self.generate_frame_num
|
|
enc_duration = tokenizer.encode(str(float(duration))+"秒")
|
|
if use_guide:
|
|
video_raw_text = video_raw_text + " 视频"
|
|
enc_text_video = tokenizer.encode(video_raw_text)
|
|
seq = enc_duration + [tokenizer['<n>']] + enc_text_video + [tokenizer['<start_of_image>']] + [-1]*400*self.generate_frame_num
|
|
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*self.generate_frame_num
|
|
logging.info("[Stage1: Generating Subsequent Frames, Frame Rate {:.1f}]\nraw text: {:s}".format(4/duration, tokenizer.decode(enc_text_video)))
|
|
|
|
text_len = len(seq) - frame_len*self.generate_frame_num - 1
|
|
guider_text_len = len(guider_seq) - frame_len*self.generate_frame_num - 1
|
|
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
|
|
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(batch_size, 1)
|
|
|
|
for given_frame_id in range(given_tokens.shape[1]):
|
|
seq[:, text_len+1+given_frame_id*400: text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
|
|
guider_seq[:, guider_text_len+1+given_frame_id*400:guider_text_len+1+(given_frame_id+1)*400] = given_tokens[:, given_frame_id]
|
|
output_list = []
|
|
|
|
if use_guide:
|
|
video_log_text_attention_weights = 0
|
|
else:
|
|
guider_seq = None
|
|
video_log_text_attention_weights = 1.4
|
|
|
|
for tim in range(max(batch_size // mbz, 1)):
|
|
start_time = time.time()
|
|
input_seq = seq[:min(batch_size, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
|
|
guider_seq2 = (guider_seq[:min(batch_size, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
|
|
output_list.append(
|
|
my_filling_sequence(self.model_stage1, args,input_seq,
|
|
batch_size=min(batch_size, mbz),
|
|
get_masks_and_position_ids=get_masks_and_position_ids_stage1,
|
|
text_len=text_len, frame_len=frame_len,
|
|
strategy=strategy_cogview2,
|
|
strategy2=strategy_cogvideo,
|
|
log_text_attention_weights=video_log_text_attention_weights,
|
|
guider_seq=guider_seq2,
|
|
guider_text_len=guider_text_len,
|
|
guidance_alpha=args.guidance_alpha,
|
|
limited_spatial_channel_mem=True,
|
|
mode_stage1=True,
|
|
)[0]
|
|
)
|
|
|
|
output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:]
|
|
|
|
# decoding
|
|
imgs, sred_imgs, txts = [], [], []
|
|
for seq in output_tokens:
|
|
decoded_imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()[i*400: (i+1)*400]), size=(480, 480)) for i in range(total_frames)]
|
|
imgs.append(decoded_imgs) # only the last image (target)
|
|
|
|
assert len(imgs) == batch_size
|
|
save_tokens = output_tokens[:, :+total_frames*400].reshape(-1, total_frames, 400).cpu()
|
|
if outputdir is not None:
|
|
for clip_i in range(len(imgs)):
|
|
# os.makedirs(output_dir_full_paths[clip_i], exist_ok=True)
|
|
my_save_multiple_images(imgs[clip_i], outputdir, subdir=f"frames/{clip_i}", debug=False)
|
|
out_filename = f'{outputdir}/{clip_i}.gif'
|
|
subprocess.check_output(f"gifmaker -i '{outputdir}'/frames/'{clip_i}'/0*.jpg -o '{out_filename}' -d 0.25", shell=True)
|
|
yield out_filename
|
|
torch.save(save_tokens, os.path.join(outputdir, 'frame_tokens.pt'))
|
|
|
|
logging.info("CogVideo Stage1 completed. Taken time {:.2f}\n".format(time.time() - process_start_time))
|
|
|
|
logging.debug("moving stage 1 model to cpu")
|
|
self.model_stage1 = self.model_stage1.cpu()
|
|
torch.cuda.empty_cache()
|
|
|
|
if not self.args.both_stages:
|
|
logging.info("only stage 1 selected, exiting")
|
|
return
|
|
|
|
gpu_rank=0
|
|
gpu_parallel_size=1
|
|
video_raw_text=self.prompt+" 视频"
|
|
duration=2.0
|
|
video_guidance_text="视频"
|
|
outputdir=f'{workdir}/output/stage2'
|
|
parent_given_tokens = save_tokens
|
|
stage2_starttime = time.time()
|
|
use_guidance = args.use_guidance_stage2
|
|
|
|
move_start_time = time.time()
|
|
logging.debug("moving stage-2 model to cuda")
|
|
self.model_stage2 = self.model_stage2.cuda()
|
|
logging.debug("moving in stage-2 model takes time: {:.2f}".format(time.time()-move_start_time))
|
|
|
|
try:
|
|
sample_num_allgpu = parent_given_tokens.shape[0]
|
|
sample_num = sample_num_allgpu // gpu_parallel_size
|
|
assert sample_num * gpu_parallel_size == sample_num_allgpu
|
|
parent_given_tokens = parent_given_tokens[gpu_rank*sample_num:(gpu_rank+1)*sample_num]
|
|
except:
|
|
logging.critical("No frame_tokens found in interpolation, skip")
|
|
return False
|
|
|
|
# CogVideo Stage2 Generation
|
|
while duration >= 0.5: # TODO: You can change the boundary to change the frame rate
|
|
parent_given_tokens_num = parent_given_tokens.shape[1]
|
|
generate_batchsize_persample = (parent_given_tokens_num-1)//2
|
|
generate_batchsize_total = generate_batchsize_persample * sample_num
|
|
total_frames = self.generate_frame_num
|
|
frame_len = 400
|
|
enc_text = tokenizer.encode(seq_text)
|
|
enc_duration = tokenizer.encode(str(float(duration))+"秒")
|
|
seq = enc_duration + [tokenizer['<n>']] + enc_text + [tokenizer['<start_of_image>']] + [-1]*400*self.generate_frame_num
|
|
text_len = len(seq) - frame_len*self.generate_frame_num - 1
|
|
|
|
logging.info("[Stage2: Generating Frames, Frame Rate {:d}]\nraw text: {:s}".format(int(4/duration), tokenizer.decode(enc_text)))
|
|
|
|
# generation
|
|
seq = torch.cuda.LongTensor(seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
|
|
for sample_i in range(sample_num):
|
|
for i in range(generate_batchsize_persample):
|
|
seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
|
|
seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
|
|
seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
|
|
|
|
if use_guidance:
|
|
guider_seq = enc_duration + [tokenizer['<n>']] + tokenizer.encode(video_guidance_text) + [tokenizer['<start_of_image>']] + [-1]*400*self.generate_frame_num
|
|
guider_text_len = len(guider_seq) - frame_len*self.generate_frame_num - 1
|
|
guider_seq = torch.cuda.LongTensor(guider_seq, device=args.device).unsqueeze(0).repeat(generate_batchsize_total, 1)
|
|
for sample_i in range(sample_num):
|
|
for i in range(generate_batchsize_persample):
|
|
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1:text_len+1+400] = parent_given_tokens[sample_i][2*i]
|
|
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+400:text_len+1+800] = parent_given_tokens[sample_i][2*i+1]
|
|
guider_seq[sample_i*generate_batchsize_persample+i][text_len+1+800:text_len+1+1200] = parent_given_tokens[sample_i][2*i+2]
|
|
video_log_text_attention_weights = 0
|
|
else:
|
|
guider_seq=None
|
|
guider_text_len=0
|
|
video_log_text_attention_weights = 1.4
|
|
|
|
mbz = args.max_inference_batch_size
|
|
|
|
assert generate_batchsize_total < mbz or generate_batchsize_total % mbz == 0
|
|
output_list = []
|
|
start_time = time.time()
|
|
for tim in range(max(generate_batchsize_total // mbz, 1)):
|
|
input_seq = seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else seq[mbz*tim:mbz*(tim+1)].clone()
|
|
guider_seq2 = (guider_seq[:min(generate_batchsize_total, mbz)].clone() if tim == 0 else guider_seq[mbz*tim:mbz*(tim+1)].clone()) if guider_seq is not None else None
|
|
output_list.append(
|
|
my_filling_sequence(self.model_stage2, args, input_seq,
|
|
batch_size=min(generate_batchsize_total, mbz),
|
|
get_masks_and_position_ids=get_masks_and_position_ids_stage2,
|
|
text_len=text_len, frame_len=frame_len,
|
|
strategy=strategy_cogview2,
|
|
strategy2=strategy_cogvideo,
|
|
log_text_attention_weights=video_log_text_attention_weights,
|
|
mode_stage1=False,
|
|
guider_seq=guider_seq2,
|
|
guider_text_len=guider_text_len,
|
|
guidance_alpha=args.guidance_alpha,
|
|
limited_spatial_channel_mem=True,
|
|
)[0]
|
|
)
|
|
logging.info("Duration {:.2f}, Taken time {:.2f}\n".format(duration, time.time() - start_time))
|
|
|
|
output_tokens = torch.cat(output_list, dim=0)
|
|
output_tokens = output_tokens[:, text_len+1:text_len+1+(total_frames)*400].reshape(sample_num, -1, 400*total_frames)
|
|
output_tokens_merge = torch.cat((output_tokens[:, :, :1*400],
|
|
output_tokens[:, :, 400*3:4*400],
|
|
output_tokens[:, :, 400*1:2*400],
|
|
output_tokens[:, :, 400*4:(total_frames)*400]), dim=2).reshape(sample_num, -1, 400)
|
|
|
|
output_tokens_merge = torch.cat((output_tokens_merge, output_tokens[:, -1:, 400*2:3*400]), dim=1)
|
|
duration /= 2
|
|
parent_given_tokens = output_tokens_merge
|
|
|
|
logging.info("CogVideo Stage2 completed. Taken time {:.2f}\n".format(time.time() - stage2_starttime))
|
|
|
|
enc_text = tokenizer.encode(seq_text)
|
|
frame_num_per_sample = parent_given_tokens.shape[1]
|
|
parent_given_tokens_2d = parent_given_tokens.reshape(-1, 400)
|
|
|
|
logging.debug("moving stage 2 model to cpu")
|
|
self.model_stage2 = self.model_stage2.cpu()
|
|
torch.cuda.empty_cache()
|
|
|
|
# use dsr if loaded
|
|
if (self.dsr):
|
|
# direct super-resolution by CogView2
|
|
logging.info("[Direct super-resolution]")
|
|
dsr_starttime = time.time()
|
|
text_seq = torch.cuda.LongTensor(enc_text, device=args.device).unsqueeze(0).repeat(parent_given_tokens_2d.shape[0], 1)
|
|
sred_tokens = self.dsr(text_seq, parent_given_tokens_2d)
|
|
decoded_sr_videos = []
|
|
|
|
for sample_i in range(sample_num):
|
|
decoded_sr_imgs = []
|
|
for frame_i in range(frame_num_per_sample):
|
|
decoded_sr_img = tokenizer.decode(image_ids=sred_tokens[frame_i+sample_i*frame_num_per_sample][-3600:])
|
|
decoded_sr_imgs.append(torch.nn.functional.interpolate(decoded_sr_img, size=(480, 480)))
|
|
decoded_sr_videos.append(decoded_sr_imgs)
|
|
|
|
for sample_i in range(sample_num):
|
|
my_save_multiple_images(decoded_sr_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
|
|
output_file = f'{outputdir}/{sample_i+sample_num*gpu_rank}.gif'
|
|
subprocess.check_output(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{output_file}' -d 0.125", shell=True)
|
|
yield output_file
|
|
|
|
logging.info("Direct super-resolution completed. Taken time {:.2f}\n".format(time.time() - dsr_starttime))
|
|
else:
|
|
#imgs = [torch.nn.functional.interpolate(tokenizer.decode(image_ids=seq.tolist()), size=(480, 480)) for seq in output_tokens_merge]
|
|
#os.makedirs(outputdir, exist_ok=True)
|
|
#my_save_multiple_images(imgs, outputdir,subdir="frames", debug=False)
|
|
#os.system(f"gifmaker -i '{outputdir}'/frames/0*.jpg -o '{outputdir}/{str(float(duration))}_concat.gif' -d 0.2")
|
|
|
|
|
|
output_tokens = torch.cat(output_list, dim=0)[:, 1+text_len:]
|
|
decoded_videos = []
|
|
|
|
for sample_i in range(sample_num):
|
|
decoded_imgs = []
|
|
for frame_i in range(frame_num_per_sample):
|
|
decoded_img = tokenizer.decode(image_ids=parent_given_tokens_2d[frame_i+sample_i*frame_num_per_sample][-3600:])
|
|
decoded_imgs.append(torch.nn.functional.interpolate(decoded_img, size=(480, 480)))
|
|
decoded_videos.append(decoded_imgs)
|
|
|
|
for sample_i in range(sample_num):
|
|
my_save_multiple_images(decoded_videos[sample_i], outputdir,subdir=f"frames/{sample_i+sample_num*gpu_rank}", debug=False)
|
|
output_file = f'{outputdir}/{sample_i+sample_num*gpu_rank}.gif'
|
|
subprocess.check_output(f"gifmaker -i '{outputdir}'/frames/'{sample_i+sample_num*gpu_rank}'/0*.jpg -o '{output_file}' -d 0.125", shell=True)
|
|
yield output_file |