mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-04 10:22:45 +08:00
272 lines
11 KiB
Python
272 lines
11 KiB
Python
"""
|
|
This script demonstrates how to generate a video using the CogVideoX model with the Hugging Face `diffusers` pipeline.
|
|
The script supports different types of video generation, including text-to-video (t2v), image-to-video (i2v),
|
|
and video-to-video (v2v), depending on the input data and different weight.
|
|
|
|
- text-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
|
|
- video-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
|
|
- image-to-video: THUDM/CogVideoX-5b-I2V or THUDM/CogVideoX1.5-5b-I2V
|
|
|
|
Running the Script:
|
|
To run the script, use the following command with appropriate arguments:
|
|
|
|
```bash
|
|
$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX1.5-5b --generate_type "t2v"
|
|
```
|
|
|
|
You can change `pipe.enable_sequential_cpu_offload()` to `pipe.enable_model_cpu_offload()` to speed up inference, but this will use more GPU memory
|
|
|
|
Additional options are available to specify the model path, guidance scale, number of inference steps, video generation type, and output paths.
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import logging
|
|
from typing import Literal, Optional
|
|
|
|
import torch
|
|
|
|
from diffusers import (
|
|
CogVideoXDPMScheduler,
|
|
CogVideoXImageToVideoPipeline,
|
|
CogVideoXPipeline,
|
|
CogVideoXVideoToVideoPipeline,
|
|
)
|
|
from diffusers.utils import export_to_video, load_image, load_video
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
|
# Recommended resolution for each model (width, height)
|
|
RESOLUTION_MAP = {
|
|
# cogvideox1.5-*
|
|
"cogvideox1.5-5b-i2v": (768, 1360),
|
|
"cogvideox1.5-5b": (768, 1360),
|
|
# cogvideox-*
|
|
"cogvideox-5b-i2v": (480, 720),
|
|
"cogvideox-5b": (480, 720),
|
|
"cogvideox-2b": (480, 720),
|
|
}
|
|
|
|
|
|
def generate_video(
|
|
prompt: str,
|
|
model_path: str,
|
|
lora_path: str = None,
|
|
lora_rank: int = 128,
|
|
num_frames: int = 81,
|
|
width: Optional[int] = None,
|
|
height: Optional[int] = None,
|
|
output_path: str = "./output.mp4",
|
|
image_or_video_path: str = "",
|
|
num_inference_steps: int = 50,
|
|
guidance_scale: float = 6.0,
|
|
num_videos_per_prompt: int = 1,
|
|
dtype: torch.dtype = torch.bfloat16,
|
|
generate_type: str = Literal["t2v", "i2v", "v2v"], # i2v: image to video, v2v: video to video
|
|
seed: int = 42,
|
|
fps: int = 16,
|
|
):
|
|
"""
|
|
Generates a video based on the given prompt and saves it to the specified path.
|
|
|
|
Parameters:
|
|
- prompt (str): The description of the video to be generated.
|
|
- model_path (str): The path of the pre-trained model to be used.
|
|
- lora_path (str): The path of the LoRA weights to be used.
|
|
- lora_rank (int): The rank of the LoRA weights.
|
|
- output_path (str): The path where the generated video will be saved.
|
|
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
|
|
- num_frames (int): Number of frames to generate. CogVideoX1.0 generates 49 frames for 6 seconds at 8 fps, while CogVideoX1.5 produces either 81 or 161 frames, corresponding to 5 seconds or 10 seconds at 16 fps.
|
|
- width (int): The width of the generated video, applicable only for CogVideoX1.5-5B-I2V
|
|
- height (int): The height of the generated video, applicable only for CogVideoX1.5-5B-I2V
|
|
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
|
|
- num_videos_per_prompt (int): Number of videos to generate per prompt.
|
|
- dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
|
|
- generate_type (str): The type of video generation (e.g., 't2v', 'i2v', 'v2v').·
|
|
- seed (int): The seed for reproducibility.
|
|
- fps (int): The frames per second for the generated video.
|
|
"""
|
|
|
|
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
|
|
# add device_map="balanced" in the from_pretrained function and remove the enable_model_cpu_offload()
|
|
# function to use Multi GPUs.
|
|
|
|
image = None
|
|
video = None
|
|
|
|
model_name = model_path.split("/")[-1].lower()
|
|
desired_resolution = RESOLUTION_MAP[model_name]
|
|
if width is None or height is None:
|
|
height, width = desired_resolution
|
|
logging.info(
|
|
f"\033[1mUsing default resolution {desired_resolution} for {model_name}\033[0m"
|
|
)
|
|
elif (height, width) != desired_resolution:
|
|
if generate_type == "i2v":
|
|
# For i2v models, use user-defined width and height
|
|
logging.warning(
|
|
f"\033[1;31mThe width({width}) and height({height}) are not recommended for {model_name}. The best resolution is {desired_resolution}.\033[0m"
|
|
)
|
|
else:
|
|
# Otherwise, use the recommended width and height
|
|
logging.warning(
|
|
f"\033[1;31m{model_name} is not supported for custom resolution. Setting back to default resolution {desired_resolution}.\033[0m"
|
|
)
|
|
height, width = desired_resolution
|
|
|
|
if generate_type == "i2v":
|
|
pipe = CogVideoXImageToVideoPipeline.from_pretrained(model_path, torch_dtype=dtype)
|
|
image = load_image(image=image_or_video_path)
|
|
elif generate_type == "t2v":
|
|
pipe = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype)
|
|
else:
|
|
pipe = CogVideoXVideoToVideoPipeline.from_pretrained(model_path, torch_dtype=dtype)
|
|
video = load_video(image_or_video_path)
|
|
|
|
# If you're using with lora, add this code
|
|
if lora_path:
|
|
pipe.load_lora_weights(
|
|
lora_path, weight_name="pytorch_lora_weights.safetensors", adapter_name="test_1"
|
|
)
|
|
pipe.fuse_lora(components=["transformer"], lora_scale=1.0)
|
|
|
|
# 2. Set Scheduler.
|
|
# Can be changed to `CogVideoXDPMScheduler` or `CogVideoXDDIMScheduler`.
|
|
# We recommend using `CogVideoXDDIMScheduler` for CogVideoX-2B.
|
|
# using `CogVideoXDPMScheduler` for CogVideoX-5B / CogVideoX-5B-I2V.
|
|
|
|
# pipe.scheduler = CogVideoXDDIMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
|
pipe.scheduler = CogVideoXDPMScheduler.from_config(
|
|
pipe.scheduler.config, timestep_spacing="trailing"
|
|
)
|
|
|
|
# 3. Enable CPU offload for the model.
|
|
# turn off if you have multiple GPUs or enough GPU memory(such as H100) and it will cost less time in inference
|
|
# and enable to("cuda")
|
|
# pipe.to("cuda")
|
|
|
|
# pipe.enable_model_cpu_offload()
|
|
pipe.enable_sequential_cpu_offload()
|
|
pipe.vae.enable_slicing()
|
|
pipe.vae.enable_tiling()
|
|
|
|
# 4. Generate the video frames based on the prompt.
|
|
# `num_frames` is the Number of frames to generate.
|
|
if generate_type == "i2v":
|
|
video_generate = pipe(
|
|
height=height,
|
|
width=width,
|
|
prompt=prompt,
|
|
image=image,
|
|
# The path of the image, the resolution of video will be the same as the image for CogVideoX1.5-5B-I2V, otherwise it will be 720 * 480
|
|
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
|
|
num_inference_steps=num_inference_steps, # Number of inference steps
|
|
num_frames=num_frames, # Number of frames to generate
|
|
use_dynamic_cfg=True, # This id used for DPM scheduler, for DDIM scheduler, it should be False
|
|
guidance_scale=guidance_scale,
|
|
generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility
|
|
).frames[0]
|
|
elif generate_type == "t2v":
|
|
video_generate = pipe(
|
|
height=height,
|
|
width=width,
|
|
prompt=prompt,
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
num_inference_steps=num_inference_steps,
|
|
num_frames=num_frames,
|
|
use_dynamic_cfg=True,
|
|
guidance_scale=guidance_scale,
|
|
generator=torch.Generator().manual_seed(seed),
|
|
).frames[0]
|
|
else:
|
|
video_generate = pipe(
|
|
height=height,
|
|
width=width,
|
|
prompt=prompt,
|
|
video=video, # The path of the video to be used as the background of the video
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
num_inference_steps=num_inference_steps,
|
|
num_frames=num_frames,
|
|
use_dynamic_cfg=True,
|
|
guidance_scale=guidance_scale,
|
|
generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility
|
|
).frames[0]
|
|
export_to_video(video_generate, output_path, fps=fps)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(
|
|
description="Generate a video from a text prompt using CogVideoX"
|
|
)
|
|
parser.add_argument(
|
|
"--prompt", type=str, required=True, help="The description of the video to be generated"
|
|
)
|
|
parser.add_argument(
|
|
"--image_or_video_path",
|
|
type=str,
|
|
default=None,
|
|
help="The path of the image to be used as the background of the video",
|
|
)
|
|
parser.add_argument(
|
|
"--model_path",
|
|
type=str,
|
|
default="THUDM/CogVideoX1.5-5B",
|
|
help="Path of the pre-trained model use",
|
|
)
|
|
parser.add_argument(
|
|
"--lora_path", type=str, default=None, help="The path of the LoRA weights to be used"
|
|
)
|
|
parser.add_argument("--lora_rank", type=int, default=128, help="The rank of the LoRA weights")
|
|
parser.add_argument(
|
|
"--output_path", type=str, default="./output.mp4", help="The path save generated video"
|
|
)
|
|
parser.add_argument(
|
|
"--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance"
|
|
)
|
|
parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
|
|
parser.add_argument(
|
|
"--num_frames", type=int, default=81, help="Number of steps for the inference process"
|
|
)
|
|
parser.add_argument("--width", type=int, default=None, help="The width of the generated video")
|
|
parser.add_argument(
|
|
"--height", type=int, default=None, help="The height of the generated video"
|
|
)
|
|
parser.add_argument(
|
|
"--fps", type=int, default=16, help="The frames per second for the generated video"
|
|
)
|
|
parser.add_argument(
|
|
"--num_videos_per_prompt",
|
|
type=int,
|
|
default=1,
|
|
help="Number of videos to generate per prompt",
|
|
)
|
|
parser.add_argument(
|
|
"--generate_type", type=str, default="t2v", help="The type of video generation"
|
|
)
|
|
parser.add_argument(
|
|
"--dtype", type=str, default="bfloat16", help="The data type for computation"
|
|
)
|
|
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
|
|
|
|
args = parser.parse_args()
|
|
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
|
|
generate_video(
|
|
prompt=args.prompt,
|
|
model_path=args.model_path,
|
|
lora_path=args.lora_path,
|
|
lora_rank=args.lora_rank,
|
|
output_path=args.output_path,
|
|
num_frames=args.num_frames,
|
|
width=args.width,
|
|
height=args.height,
|
|
image_or_video_path=args.image_or_video_path,
|
|
num_inference_steps=args.num_inference_steps,
|
|
guidance_scale=args.guidance_scale,
|
|
num_videos_per_prompt=args.num_videos_per_prompt,
|
|
dtype=dtype,
|
|
generate_type=args.generate_type,
|
|
seed=args.seed,
|
|
fps=args.fps,
|
|
)
|