""" This script demonstrates how to generate a video from a text prompt using CogVideoX with quantization. Note: Must install the `torchao`,`torch`,`diffusers`,`accelerate` library FROM SOURCE to use the quantization feature. Only NVIDIA GPUs like H100 or higher are supported om FP-8 quantization. ALL quantization schemes must using with NVIDIA GPUs. # Run the script: python cli_demo_quantization.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX-2b --quantization_scheme fp8 --dtype float16 python cli_demo_quantization.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX-5b --quantization_scheme fp8 --dtype bfloat16 """ import argparse import os import torch import torch._dynamo from diffusers import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline, CogVideoXDPMScheduler from diffusers.utils import export_to_video from transformers import T5EncoderModel from torchao.quantization import quantize_, int8_weight_only from torchao.float8.inference import ActivationCasting, QuantConfig, quantize_to_float8 os.environ["TORCH_LOGS"] = "+dynamo,output_code,graph_breaks,recompiles" torch._dynamo.config.suppress_errors = True torch.set_float32_matmul_precision("high") torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True def quantize_model(part, quantization_scheme): if quantization_scheme == "int8": quantize_(part, int8_weight_only()) elif quantization_scheme == "fp8": quantize_to_float8(part, QuantConfig(ActivationCasting.DYNAMIC)) return part def generate_video( prompt: str, model_path: str, output_path: str = "./output.mp4", num_inference_steps: int = 50, guidance_scale: float = 6.0, num_videos_per_prompt: int = 1, quantization_scheme: str = "fp8", dtype: torch.dtype = torch.bfloat16, ): """ Generates a video based on the given prompt and saves it to the specified path. Parameters: - prompt (str): The description of the video to be generated. - model_path (str): The path of the pre-trained model to be used. - output_path (str): The path where the generated video will be saved. - num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality. - guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt. - num_videos_per_prompt (int): Number of videos to generate per prompt. - quantization_scheme (str): The quantization scheme to use ('int8', 'fp8'). - dtype (torch.dtype): The data type for computation (default is torch.bfloat16). """ text_encoder = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder", torch_dtype=dtype) text_encoder = quantize_model(part=text_encoder, quantization_scheme=quantization_scheme) transformer = CogVideoXTransformer3DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype) transformer = quantize_model(part=transformer, quantization_scheme=quantization_scheme) vae = AutoencoderKLCogVideoX.from_pretrained(model_path, subfolder="vae", torch_dtype=dtype) vae = quantize_model(part=vae, quantization_scheme=quantization_scheme) pipe = CogVideoXPipeline.from_pretrained( model_path, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=dtype, ) pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") # Using with compile will run faster. First time infer will cost ~30min to compile. # pipe.transformer.to(memory_format=torch.channels_last) # for FP8 should remove pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload() # This is not for FP8 and INT8 and should remove this line # pipe.enable_sequential_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() video = pipe( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, num_inference_steps=num_inference_steps, num_frames=49, use_dynamic_cfg=True, ## This id used for DPM Sechduler, for DDIM scheduler, it should be False guidance_scale=guidance_scale, generator=torch.Generator(device="cuda").manual_seed(42), ).frames[0] export_to_video(video, output_path, fps=8) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX") parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated") parser.add_argument( "--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used" ) parser.add_argument( "--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved" ) parser.add_argument( "--num_inference_steps", type=int, default=50, help="Number of steps for the inference process" ) parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance") parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt") parser.add_argument( "--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16', 'bfloat16')" ) parser.add_argument( "--quantization_scheme", type=str, default="bf16", choices=["int8", "fp8"], help="The quantization scheme to use (int8, fp8)", ) args = parser.parse_args() dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16 generate_video( prompt=args.prompt, model_path=args.model_path, output_path=args.output_path, num_inference_steps=args.num_inference_steps, guidance_scale=args.guidance_scale, num_videos_per_prompt=args.num_videos_per_prompt, quantization_scheme=args.quantization_scheme, dtype=dtype, )