import math import torch import torch.distributed import torch.nn as nn from ..util import ( get_context_parallel_group, get_context_parallel_rank, get_context_parallel_world_size, ) _USE_CP = True def cast_tuple(t, length=1): return t if isinstance(t, tuple) else ((t,) * length) def divisible_by(num, den): return (num % den) == 0 def is_odd(n): return not divisible_by(n, 2) def exists(v): return v is not None def pair(t): return t if isinstance(t, tuple) else (t, t) def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb def nonlinearity(x): # swish return x * torch.sigmoid(x) def leaky_relu(p=0.1): return nn.LeakyReLU(p) def _split(input_, dim): cp_world_size = get_context_parallel_world_size() if cp_world_size == 1: return input_ cp_rank = get_context_parallel_rank() # print('in _split, cp_rank:', cp_rank, 'input_size:', input_.shape) inpu_first_frame_ = input_.transpose(0, dim)[:1].transpose(0, dim).contiguous() input_ = input_.transpose(0, dim)[1:].transpose(0, dim).contiguous() dim_size = input_.size()[dim] // cp_world_size input_list = torch.split(input_, dim_size, dim=dim) output = input_list[cp_rank] if cp_rank == 0: output = torch.cat([inpu_first_frame_, output], dim=dim) output = output.contiguous() # print('out _split, cp_rank:', cp_rank, 'output_size:', output.shape) return output def _gather(input_, dim): cp_world_size = get_context_parallel_world_size() # Bypass the function if context parallel is 1 if cp_world_size == 1: return input_ group = get_context_parallel_group() cp_rank = get_context_parallel_rank() # print('in _gather, cp_rank:', cp_rank, 'input_size:', input_.shape) input_first_frame_ = input_.transpose(0, dim)[:1].transpose(0, dim).contiguous() if cp_rank == 0: input_ = input_.transpose(0, dim)[1:].transpose(0, dim).contiguous() tensor_list = [torch.empty_like(torch.cat([input_first_frame_, input_], dim=dim))] + [ torch.empty_like(input_) for _ in range(cp_world_size - 1) ] if cp_rank == 0: input_ = torch.cat([input_first_frame_, input_], dim=dim) tensor_list[cp_rank] = input_ torch.distributed.all_gather(tensor_list, input_, group=group) output = torch.cat(tensor_list, dim=dim).contiguous() # print('out _gather, cp_rank:', cp_rank, 'output_size:', output.shape) return output def _conv_split(input_, dim, kernel_size): cp_world_size = get_context_parallel_world_size() # Bypass the function if context parallel is 1 if cp_world_size == 1: return input_ # print('in _conv_split, cp_rank:', cp_rank, 'input_size:', input_.shape) cp_rank = get_context_parallel_rank() dim_size = (input_.size()[dim] - kernel_size) // cp_world_size if cp_rank == 0: output = input_.transpose(dim, 0)[: dim_size + kernel_size].transpose(dim, 0) else: output = input_.transpose(dim, 0)[ cp_rank * dim_size + 1 : (cp_rank + 1) * dim_size + kernel_size ].transpose(dim, 0) output = output.contiguous() # print('out _conv_split, cp_rank:', cp_rank, 'input_size:', output.shape) return output def _conv_gather(input_, dim, kernel_size): cp_world_size = get_context_parallel_world_size() # Bypass the function if context parallel is 1 if cp_world_size == 1: return input_ group = get_context_parallel_group() cp_rank = get_context_parallel_rank() # print('in _conv_gather, cp_rank:', cp_rank, 'input_size:', input_.shape) input_first_kernel_ = input_.transpose(0, dim)[:kernel_size].transpose(0, dim).contiguous() if cp_rank == 0: input_ = input_.transpose(0, dim)[kernel_size:].transpose(0, dim).contiguous() else: input_ = input_.transpose(0, dim)[kernel_size - 1 :].transpose(0, dim).contiguous() tensor_list = [torch.empty_like(torch.cat([input_first_kernel_, input_], dim=dim))] + [ torch.empty_like(input_) for _ in range(cp_world_size - 1) ] if cp_rank == 0: input_ = torch.cat([input_first_kernel_, input_], dim=dim) tensor_list[cp_rank] = input_ torch.distributed.all_gather(tensor_list, input_, group=group) # Note: torch.cat already creates a contiguous tensor. output = torch.cat(tensor_list, dim=dim).contiguous() # print('out _conv_gather, cp_rank:', cp_rank, 'input_size:', output.shape) return output