import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from torch import einsum from einops import rearrange class VectorQuantizer2(nn.Module): """ Improved version over VectorQuantizer, can be used as a drop-in replacement. Mostly avoids costly matrix multiplications and allows for post-hoc remapping of indices. """ # NOTE: due to a bug the beta term was applied to the wrong term. for # backwards compatibility we use the buggy version by default, but you can # specify legacy=False to fix it. def __init__( self, n_e, e_dim, beta, remap=None, unknown_index="random", sane_index_shape=False, legacy=True, ): super().__init__() self.n_e = n_e self.e_dim = e_dim self.beta = beta self.legacy = legacy self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-1.0 / self.n_e, 1.0 / self.n_e) self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print( f"Remapping {self.n_e} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: self.re_embed = n_e self.sane_index_shape = sane_index_shape def remap_to_used(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to( device=new.device ) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) def forward(self, z, temp=None, rescale_logits=False, return_logits=False): assert temp is None or temp == 1.0, "Only for interface compatible with Gumbel" assert rescale_logits == False, "Only for interface compatible with Gumbel" assert return_logits == False, "Only for interface compatible with Gumbel" # reshape z -> (batch, height, width, channel) and flatten z = rearrange(z, "b c h w -> b h w c").contiguous() z_flattened = z.view(-1, self.e_dim) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z d = ( torch.sum(z_flattened**2, dim=1, keepdim=True) + torch.sum(self.embedding.weight**2, dim=1) - 2 * torch.einsum("bd,dn->bn", z_flattened, rearrange(self.embedding.weight, "n d -> d n")) ) min_encoding_indices = torch.argmin(d, dim=1) z_q = self.embedding(min_encoding_indices).view(z.shape) perplexity = None min_encodings = None # compute loss for embedding if not self.legacy: loss = self.beta * torch.mean((z_q.detach() - z) ** 2) + torch.mean( (z_q - z.detach()) ** 2 ) else: loss = torch.mean((z_q.detach() - z) ** 2) + self.beta * torch.mean( (z_q - z.detach()) ** 2 ) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = rearrange(z_q, "b h w c -> b c h w").contiguous() if self.remap is not None: min_encoding_indices = min_encoding_indices.reshape(z.shape[0], -1) # add batch axis min_encoding_indices = self.remap_to_used(min_encoding_indices) min_encoding_indices = min_encoding_indices.reshape(-1, 1) # flatten if self.sane_index_shape: min_encoding_indices = min_encoding_indices.reshape( z_q.shape[0], z_q.shape[2], z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def get_codebook_entry(self, indices, shape): # shape specifying (batch, height, width, channel) if self.remap is not None: indices = indices.reshape(shape[0], -1) # add batch axis indices = self.unmap_to_all(indices) indices = indices.reshape(-1) # flatten again # get quantized latent vectors z_q = self.embedding(indices) if shape is not None: z_q = z_q.view(shape) # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q class GumbelQuantize(nn.Module): """ credit to @karpathy: https://github.com/karpathy/deep-vector-quantization/blob/main/model.py (thanks!) Gumbel Softmax trick quantizer Categorical Reparameterization with Gumbel-Softmax, Jang et al. 2016 https://arxiv.org/abs/1611.01144 """ def __init__( self, num_hiddens, embedding_dim, n_embed, straight_through=True, kl_weight=5e-4, temp_init=1.0, use_vqinterface=True, remap=None, unknown_index="random", ): super().__init__() self.embedding_dim = embedding_dim self.n_embed = n_embed self.straight_through = straight_through self.temperature = temp_init self.kl_weight = kl_weight self.proj = nn.Conv2d(num_hiddens, n_embed, 1) self.embed = nn.Embedding(n_embed, embedding_dim) self.use_vqinterface = use_vqinterface self.remap = remap if self.remap is not None: self.register_buffer("used", torch.tensor(np.load(self.remap))) self.re_embed = self.used.shape[0] self.unknown_index = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": self.unknown_index = self.re_embed self.re_embed = self.re_embed + 1 print( f"Remapping {self.n_embed} indices to {self.re_embed} indices. " f"Using {self.unknown_index} for unknown indices." ) else: self.re_embed = n_embed def remap_to_used(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) match = (inds[:, :, None] == used[None, None, ...]).long() new = match.argmax(-1) unknown = match.sum(2) < 1 if self.unknown_index == "random": new[unknown] = torch.randint(0, self.re_embed, size=new[unknown].shape).to( device=new.device ) else: new[unknown] = self.unknown_index return new.reshape(ishape) def unmap_to_all(self, inds): ishape = inds.shape assert len(ishape) > 1 inds = inds.reshape(ishape[0], -1) used = self.used.to(inds) if self.re_embed > self.used.shape[0]: # extra token inds[inds >= self.used.shape[0]] = 0 # simply set to zero back = torch.gather(used[None, :][inds.shape[0] * [0], :], 1, inds) return back.reshape(ishape) def forward(self, z, temp=None, return_logits=False): # force hard = True when we are in eval mode, as we must quantize. actually, always true seems to work hard = self.straight_through if self.training else True temp = self.temperature if temp is None else temp logits = self.proj(z) if self.remap is not None: # continue only with used logits full_zeros = torch.zeros_like(logits) logits = logits[:, self.used, ...] soft_one_hot = F.gumbel_softmax(logits, tau=temp, dim=1, hard=hard) if self.remap is not None: # go back to all entries but unused set to zero full_zeros[:, self.used, ...] = soft_one_hot soft_one_hot = full_zeros z_q = einsum("b n h w, n d -> b d h w", soft_one_hot, self.embed.weight) # + kl divergence to the prior loss qy = F.softmax(logits, dim=1) diff = self.kl_weight * torch.sum(qy * torch.log(qy * self.n_embed + 1e-10), dim=1).mean() ind = soft_one_hot.argmax(dim=1) if self.remap is not None: ind = self.remap_to_used(ind) if self.use_vqinterface: if return_logits: return z_q, diff, (None, None, ind), logits return z_q, diff, (None, None, ind) return z_q, diff, ind def get_codebook_entry(self, indices, shape): b, h, w, c = shape assert b * h * w == indices.shape[0] indices = rearrange(indices, "(b h w) -> b h w", b=b, h=h, w=w) if self.remap is not None: indices = self.unmap_to_all(indices) one_hot = F.one_hot(indices, num_classes=self.n_embed).permute(0, 3, 1, 2).float() z_q = einsum("b n h w, n d -> b d h w", one_hot, self.embed.weight) return z_q