import functools
import importlib
import os
from functools import partial
from inspect import isfunction

import fsspec
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from safetensors.torch import load_file as load_safetensors
import torch.distributed

_CONTEXT_PARALLEL_GROUP = None
_CONTEXT_PARALLEL_SIZE = None


def is_context_parallel_initialized():
    if _CONTEXT_PARALLEL_GROUP is None:
        return False
    else:
        return True


def initialize_context_parallel(context_parallel_size):
    global _CONTEXT_PARALLEL_GROUP
    global _CONTEXT_PARALLEL_SIZE

    assert _CONTEXT_PARALLEL_GROUP is None, "context parallel group is already initialized"
    _CONTEXT_PARALLEL_SIZE = context_parallel_size

    rank = torch.distributed.get_rank()
    world_size = torch.distributed.get_world_size()

    for i in range(0, world_size, context_parallel_size):
        ranks = range(i, i + context_parallel_size)
        group = torch.distributed.new_group(ranks)
        if rank in ranks:
            _CONTEXT_PARALLEL_GROUP = group
            break


def get_context_parallel_group():
    assert _CONTEXT_PARALLEL_GROUP is not None, "context parallel group is not initialized"

    return _CONTEXT_PARALLEL_GROUP


def get_context_parallel_world_size():
    assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"

    return _CONTEXT_PARALLEL_SIZE


def get_context_parallel_rank():
    assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"

    rank = torch.distributed.get_rank()
    cp_rank = rank % _CONTEXT_PARALLEL_SIZE
    return cp_rank


def get_context_parallel_group_rank():
    assert _CONTEXT_PARALLEL_SIZE is not None, "context parallel size is not initialized"

    rank = torch.distributed.get_rank()
    cp_group_rank = rank // _CONTEXT_PARALLEL_SIZE

    return cp_group_rank


class SafeConv3d(torch.nn.Conv3d):
    def forward(self, input):
        memory_count = torch.prod(torch.tensor(input.shape)).item() * 2 / 1024**3
        if memory_count > 2:
            kernel_size = self.kernel_size[0]
            part_num = int(memory_count / 2) + 1
            input_chunks = torch.chunk(input, part_num, dim=2)  # NCTHW
            if kernel_size > 1:
                input_chunks = [input_chunks[0]] + [
                    torch.cat((input_chunks[i - 1][:, :, -kernel_size + 1 :], input_chunks[i]), dim=2)
                    for i in range(1, len(input_chunks))
                ]

            output_chunks = []
            for input_chunk in input_chunks:
                output_chunks.append(super(SafeConv3d, self).forward(input_chunk))
            output = torch.cat(output_chunks, dim=2)
            return output
        else:
            return super(SafeConv3d, self).forward(input)


def disabled_train(self, mode=True):
    """Overwrite model.train with this function to make sure train/eval mode
    does not change anymore."""
    return self


def get_string_from_tuple(s):
    try:
        # Check if the string starts and ends with parentheses
        if s[0] == "(" and s[-1] == ")":
            # Convert the string to a tuple
            t = eval(s)
            # Check if the type of t is tuple
            if type(t) == tuple:
                return t[0]
            else:
                pass
    except:
        pass
    return s


def is_power_of_two(n):
    """
    chat.openai.com/chat
    Return True if n is a power of 2, otherwise return False.

    The function is_power_of_two takes an integer n as input and returns True if n is a power of 2, otherwise it returns False.
    The function works by first checking if n is less than or equal to 0. If n is less than or equal to 0, it can't be a power of 2, so the function returns False.
    If n is greater than 0, the function checks whether n is a power of 2 by using a bitwise AND operation between n and n-1. If n is a power of 2, then it will have only one bit set to 1 in its binary representation. When we subtract 1 from a power of 2, all the bits to the right of that bit become 1, and the bit itself becomes 0. So, when we perform a bitwise AND between n and n-1, we get 0 if n is a power of 2, and a non-zero value otherwise.
    Thus, if the result of the bitwise AND operation is 0, then n is a power of 2 and the function returns True. Otherwise, the function returns False.

    """
    if n <= 0:
        return False
    return (n & (n - 1)) == 0


def autocast(f, enabled=True):
    def do_autocast(*args, **kwargs):
        with torch.cuda.amp.autocast(
            enabled=enabled,
            dtype=torch.get_autocast_gpu_dtype(),
            cache_enabled=torch.is_autocast_cache_enabled(),
        ):
            return f(*args, **kwargs)

    return do_autocast


def load_partial_from_config(config):
    return partial(get_obj_from_str(config["target"]), **config.get("params", dict()))


def log_txt_as_img(wh, xc, size=10):
    # wh a tuple of (width, height)
    # xc a list of captions to plot
    b = len(xc)
    txts = list()
    for bi in range(b):
        txt = Image.new("RGB", wh, color="white")
        draw = ImageDraw.Draw(txt)
        font = ImageFont.truetype("data/DejaVuSans.ttf", size=size)
        nc = int(40 * (wh[0] / 256))
        if isinstance(xc[bi], list):
            text_seq = xc[bi][0]
        else:
            text_seq = xc[bi]
        lines = "\n".join(text_seq[start : start + nc] for start in range(0, len(text_seq), nc))

        try:
            draw.text((0, 0), lines, fill="black", font=font)
        except UnicodeEncodeError:
            print("Cant encode string for logging. Skipping.")

        txt = np.array(txt).transpose(2, 0, 1) / 127.5 - 1.0
        txts.append(txt)
    txts = np.stack(txts)
    txts = torch.tensor(txts)
    return txts


def partialclass(cls, *args, **kwargs):
    class NewCls(cls):
        __init__ = functools.partialmethod(cls.__init__, *args, **kwargs)

    return NewCls


def make_path_absolute(path):
    fs, p = fsspec.core.url_to_fs(path)
    if fs.protocol == "file":
        return os.path.abspath(p)
    return path


def ismap(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] > 3)


def isimage(x):
    if not isinstance(x, torch.Tensor):
        return False
    return (len(x.shape) == 4) and (x.shape[1] == 3 or x.shape[1] == 1)


def isheatmap(x):
    if not isinstance(x, torch.Tensor):
        return False

    return x.ndim == 2


def isneighbors(x):
    if not isinstance(x, torch.Tensor):
        return False
    return x.ndim == 5 and (x.shape[2] == 3 or x.shape[2] == 1)


def exists(x):
    return x is not None


def expand_dims_like(x, y):
    while x.dim() != y.dim():
        x = x.unsqueeze(-1)
    return x


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


def mean_flat(tensor):
    """
    https://github.com/openai/guided-diffusion/blob/27c20a8fab9cb472df5d6bdd6c8d11c8f430b924/guided_diffusion/nn.py#L86
    Take the mean over all non-batch dimensions.
    """
    return tensor.mean(dim=list(range(1, len(tensor.shape))))


def count_params(model, verbose=False):
    total_params = sum(p.numel() for p in model.parameters())
    if verbose:
        print(f"{model.__class__.__name__} has {total_params * 1.e-6:.2f} M params.")
    return total_params


def instantiate_from_config(config):
    if not "target" in config:
        if config == "__is_first_stage__":
            return None
        elif config == "__is_unconditional__":
            return None
        raise KeyError("Expected key `target` to instantiate.")
    return get_obj_from_str(config["target"])(**config.get("params", dict()))


def get_obj_from_str(string, reload=False, invalidate_cache=True):
    module, cls = string.rsplit(".", 1)
    if invalidate_cache:
        importlib.invalidate_caches()
    if reload:
        module_imp = importlib.import_module(module)
        importlib.reload(module_imp)
    return getattr(importlib.import_module(module, package=None), cls)


def append_zero(x):
    return torch.cat([x, x.new_zeros([1])])


def append_dims(x, target_dims):
    """Appends dimensions to the end of a tensor until it has target_dims dimensions."""
    dims_to_append = target_dims - x.ndim
    if dims_to_append < 0:
        raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
    return x[(...,) + (None,) * dims_to_append]


def load_model_from_config(config, ckpt, verbose=True, freeze=True):
    print(f"Loading model from {ckpt}")
    if ckpt.endswith("ckpt"):
        pl_sd = torch.load(ckpt, map_location="cpu")
        if "global_step" in pl_sd:
            print(f"Global Step: {pl_sd['global_step']}")
        sd = pl_sd["state_dict"]
    elif ckpt.endswith("safetensors"):
        sd = load_safetensors(ckpt)
    else:
        raise NotImplementedError

    model = instantiate_from_config(config.model)

    m, u = model.load_state_dict(sd, strict=False)

    if len(m) > 0 and verbose:
        print("missing keys:")
        print(m)
    if len(u) > 0 and verbose:
        print("unexpected keys:")
        print(u)

    if freeze:
        for param in model.parameters():
            param.requires_grad = False

    model.eval()
    return model


def get_configs_path() -> str:
    """
    Get the `configs` directory.
    For a working copy, this is the one in the root of the repository,
    but for an installed copy, it's in the `sgm` package (see pyproject.toml).
    """
    this_dir = os.path.dirname(__file__)
    candidates = (
        os.path.join(this_dir, "configs"),
        os.path.join(this_dir, "..", "configs"),
    )
    for candidate in candidates:
        candidate = os.path.abspath(candidate)
        if os.path.isdir(candidate):
            return candidate
    raise FileNotFoundError(f"Could not find SGM configs in {candidates}")


def get_nested_attribute(obj, attribute_path, depth=None, return_key=False):
    """
    Will return the result of a recursive get attribute call.
    E.g.:
        a.b.c
        = getattr(getattr(a, "b"), "c")
        = get_nested_attribute(a, "b.c")
    If any part of the attribute call is an integer x with current obj a, will
    try to call a[x] instead of a.x first.
    """
    attributes = attribute_path.split(".")
    if depth is not None and depth > 0:
        attributes = attributes[:depth]
    assert len(attributes) > 0, "At least one attribute should be selected"
    current_attribute = obj
    current_key = None
    for level, attribute in enumerate(attributes):
        current_key = ".".join(attributes[: level + 1])
        try:
            id_ = int(attribute)
            current_attribute = current_attribute[id_]
        except ValueError:
            current_attribute = getattr(current_attribute, attribute)

    return (current_attribute, current_key) if return_key else current_attribute


def checkpoint(func, inputs, params, flag):
    """
    Evaluate a function without caching intermediate activations, allowing for
    reduced memory at the expense of extra compute in the backward pass.
    :param func: the function to evaluate.
    :param inputs: the argument sequence to pass to `func`.
    :param params: a sequence of parameters `func` depends on but does not
                   explicitly take as arguments.
    :param flag: if False, disable gradient checkpointing.
    """
    if flag:
        args = tuple(inputs) + tuple(params)
        return CheckpointFunction.apply(func, len(inputs), *args)
    else:
        return func(*inputs)


class CheckpointFunction(torch.autograd.Function):
    @staticmethod
    def forward(ctx, run_function, length, *args):
        ctx.run_function = run_function
        ctx.input_tensors = list(args[:length])
        ctx.input_params = list(args[length:])
        ctx.gpu_autocast_kwargs = {
            "enabled": torch.is_autocast_enabled(),
            "dtype": torch.get_autocast_gpu_dtype(),
            "cache_enabled": torch.is_autocast_cache_enabled(),
        }
        with torch.no_grad():
            output_tensors = ctx.run_function(*ctx.input_tensors)
        return output_tensors

    @staticmethod
    def backward(ctx, *output_grads):
        ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
        with torch.enable_grad(), torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs):
            # Fixes a bug where the first op in run_function modifies the
            # Tensor storage in place, which is not allowed for detach()'d
            # Tensors.
            shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
            output_tensors = ctx.run_function(*shallow_copies)
        input_grads = torch.autograd.grad(
            output_tensors,
            ctx.input_tensors + ctx.input_params,
            output_grads,
            allow_unused=True,
        )
        del ctx.input_tensors
        del ctx.input_params
        del output_tensors
        return (None, None) + input_grads