# SAT CogVideoX-2B [中文阅读](./README_zh.md) [日本語で読む](./README_ja.md) This folder contains the inference code using [SAT](https://github.com/THUDM/SwissArmyTransformer) weights and the fine-tuning code for SAT weights. This code is the framework used by the team to train the model. It has few comments and requires careful study. ## Inference Model ### 1. Ensure that you have correctly installed the dependencies required by this folder. ```shell pip install -r requirements.txt ``` ### 2. Download the model weights ### 2. Download model weights First, go to the SAT mirror to download the model weights. For the CogVideoX-2B model, please download as follows: ```shell mkdir CogVideoX-2b-sat cd CogVideoX-2b-sat wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1 mv 'index.html?dl=1' vae.zip unzip vae.zip wget https://cloud.tsinghua.edu.cn/f/556a3e1329e74f1bac45/?dl=1 mv 'index.html?dl=1' transformer.zip unzip transformer.zip ``` For the CogVideoX-5B model, please download the `transformers` file as follows link: (VAE files are the same as 2B) + [CogVideoX-5B](https://cloud.tsinghua.edu.cn/d/fcef5b3904294a6885e5/?p=%2F&mode=list) + [CogVideoX-5B-I2V](https://cloud.tsinghua.edu.cn/d/5cc62a2d6e7d45c0a2f6/?p=%2F1&mode=list) Next, you need to format the model files as follows: ``` . ├── transformer │ ├── 1000 (or 1) │ │ └── mp_rank_00_model_states.pt │ └── latest └── vae └── 3d-vae.pt ``` Due to large size of model weight file, using `git lfs` is recommended. Installation of `git lfs` can be found [here](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing) Next, clone the T5 model, which is not used for training and fine-tuning, but must be used. > T5 model is available on [Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b) as well. ```shell git clone https://huggingface.co/THUDM/CogVideoX-2b.git mkdir t5-v1_1-xxl mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl ``` By following the above approach, you will obtain a safetensor format T5 file. Ensure that there are no errors when loading it into Deepspeed in Finetune. ``` ├── added_tokens.json ├── config.json ├── model-00001-of-00002.safetensors ├── model-00002-of-00002.safetensors ├── model.safetensors.index.json ├── special_tokens_map.json ├── spiece.model └── tokenizer_config.json 0 directories, 8 files ``` ### 3. Modify the file in `configs/cogvideox_2b.yaml`. ```yaml model: scale_factor: 1.15258426 disable_first_stage_autocast: true log_keys: - txt denoiser_config: target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser params: num_idx: 1000 quantize_c_noise: False weighting_config: target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting scaling_config: target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling discretization_config: target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization params: shift_scale: 3.0 network_config: target: dit_video_concat.DiffusionTransformer params: time_embed_dim: 512 elementwise_affine: True num_frames: 49 time_compressed_rate: 4 latent_width: 90 latent_height: 60 num_layers: 30 patch_size: 2 in_channels: 16 out_channels: 16 hidden_size: 1920 adm_in_channels: 256 num_attention_heads: 30 transformer_args: checkpoint_activations: True ## using gradient checkpointing vocab_size: 1 max_sequence_length: 64 layernorm_order: pre skip_init: false model_parallel_size: 1 is_decoder: false modules: pos_embed_config: target: dit_video_concat.Basic3DPositionEmbeddingMixin params: text_length: 226 height_interpolation: 1.875 width_interpolation: 1.875 patch_embed_config: target: dit_video_concat.ImagePatchEmbeddingMixin params: text_hidden_size: 4096 adaln_layer_config: target: dit_video_concat.AdaLNMixin params: qk_ln: True final_layer_config: target: dit_video_concat.FinalLayerMixin conditioner_config: target: sgm.modules.GeneralConditioner params: emb_models: - is_trainable: false input_key: txt ucg_rate: 0.1 target: sgm.modules.encoders.modules.FrozenT5Embedder params: model_dir: "t5-v1_1-xxl" # Absolute path to the CogVideoX-2b/t5-v1_1-xxl weights folder max_length: 226 first_stage_config: target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper params: cp_size: 1 ckpt_path: "CogVideoX-2b-sat/vae/3d-vae.pt" # Absolute path to the CogVideoX-2b-sat/vae/3d-vae.pt folder ignore_keys: [ 'loss' ] loss_config: target: torch.nn.Identity regularizer_config: target: vae_modules.regularizers.DiagonalGaussianRegularizer encoder_config: target: vae_modules.cp_enc_dec.ContextParallelEncoder3D params: double_z: true z_channels: 16 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: [ 1, 2, 2, 4 ] attn_resolutions: [ ] num_res_blocks: 3 dropout: 0.0 gather_norm: True decoder_config: target: vae_modules.cp_enc_dec.ContextParallelDecoder3D params: double_z: True z_channels: 16 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: [ 1, 2, 2, 4 ] attn_resolutions: [ ] num_res_blocks: 3 dropout: 0.0 gather_norm: False loss_fn_config: target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss params: offset_noise_level: 0 sigma_sampler_config: target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling params: uniform_sampling: True num_idx: 1000 discretization_config: target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization params: shift_scale: 3.0 sampler_config: target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler params: num_steps: 50 verbose: True discretization_config: target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization params: shift_scale: 3.0 guider_config: target: sgm.modules.diffusionmodules.guiders.DynamicCFG params: scale: 6 exp: 5 num_steps: 50 ``` ### 4. Modify the file in `configs/inference.yaml`. ```yaml args: latent_channels: 16 mode: inference load: "{absolute_path/to/your}/transformer" # Absolute path to the CogVideoX-2b-sat/transformer folder # load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter batch_size: 1 input_type: txt # You can choose txt for pure text input, or change to cli for command line input input_file: configs/test.txt # Pure text file, which can be edited sampling_num_frames: 13 # Must be 13, 11 or 9 sampling_fps: 8 fp16: True # For CogVideoX-2B # bf16: True # For CogVideoX-5B output_dir: outputs/ force_inference: True ``` + Modify `configs/test.txt` if multiple prompts is required, in which each line makes a prompt. + For better prompt formatting, refer to [convert_demo.py](../inference/convert_demo.py), for which you should set the OPENAI_API_KEY as your environmental variable. + Modify `input_type` in `configs/inference.yaml` if use command line as prompt iuput. ```yaml input_type: cli ``` This allows input from the command line as prompts. Change `output_dir` if you wish to modify the address of the output video ```yaml output_dir: outputs/ ``` It is saved by default in the `.outputs/` folder. ### 5. Run the inference code to perform inference. ```shell bash inference.sh ``` ## Fine-tuning the Model ### Preparing the Dataset The dataset format should be as follows: ``` . ├── labels │   ├── 1.txt │   ├── 2.txt │   ├── ... └── videos ├── 1.mp4 ├── 2.mp4 ├── ... ``` Each text file shares the same name as its corresponding video, serving as the label for that video. Videos and labels should be matched one-to-one. Generally, a single video should not be associated with multiple labels. For style fine-tuning, please prepare at least 50 videos and labels with similar styles to ensure proper fitting. ### Modifying Configuration Files We support two fine-tuning methods: `Lora` and full-parameter fine-tuning. Please note that both methods only fine-tune the `transformer` part and do not modify the `VAE` section. `T5` is used solely as an Encoder. Please modify the `configs/sft.yaml` (for full-parameter fine-tuning) file as follows: ``` # checkpoint_activations: True ## Using gradient checkpointing (Both checkpoint_activations in the config file need to be set to True) model_parallel_size: 1 # Model parallel size experiment_name: lora-disney # Experiment name (do not modify) mode: finetune # Mode (do not modify) load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformer model path no_load_rng: True # Whether to load random seed train_iters: 1000 # Training iterations eval_iters: 1 # Evaluation iterations eval_interval: 100 # Evaluation interval eval_batch_size: 1 # Evaluation batch size save: ckpts # Model save path save_interval: 100 # Model save interval log_interval: 20 # Log output interval train_data: [ "your train data path" ] valid_data: [ "your val data path" ] # Training and validation datasets can be the same split: 1,0,0 # Training, validation, and test set ratio num_workers: 8 # Number of worker threads for data loader force_train: True # Allow missing keys when loading checkpoint (T5 and VAE are loaded separately) only_log_video_latents: True # Avoid memory overhead caused by VAE decode deepspeed: bf16: enabled: False # For CogVideoX-2B set to False and for CogVideoX-5B set to True fp16: enabled: True # For CogVideoX-2B set to True and for CogVideoX-5B set to False ``` If you wish to use Lora fine-tuning, you also need to modify the `cogvideox__lora` file: Here, take `CogVideoX-2B` as a reference: ``` model: scale_factor: 1.15258426 disable_first_stage_autocast: true not_trainable_prefixes: [ 'all' ] ## Uncomment log_keys: - txt' lora_config: ## Uncomment target: sat.model.finetune.lora2.LoraMixin params: r: 256 ``` ### Modifying Run Scripts Edit `finetune_single_gpu.sh` or `finetune_multi_gpus.sh` to select the configuration file. Below are two examples: 1. If you want to use the `CogVideoX-2B` model and the `Lora` method, you need to modify `finetune_single_gpu.sh` or `finetune_multi_gpus.sh`: ``` run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b_lora.yaml configs/sft.yaml --seed $RANDOM" ``` 2. If you want to use the `CogVideoX-2B` model and the `full-parameter fine-tuning` method, you need to modify `finetune_single_gpu.sh` or `finetune_multi_gpus.sh`: ``` run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b.yaml configs/sft.yaml --seed $RANDOM" ``` ### Fine-Tuning and Evaluation Run the inference code to start fine-tuning. ``` bash finetune_single_gpu.sh # Single GPU bash finetune_multi_gpus.sh # Multi GPUs ``` ### Using the Fine-Tuned Model The fine-tuned model cannot be merged; here is how to modify the inference configuration file `inference.sh`: ``` run_cmd="$environs python sample_video.py --base configs/cogvideox__lora.yaml configs/inference.yaml --seed 42" ``` Then, execute the code: ``` bash inference.sh ``` ### Converting to Huggingface Diffusers Supported Weights The SAT weight format is different from Huggingface's weight format and needs to be converted. Please run: ```shell python ../tools/convert_weight_sat2hf.py ``` ### Exporting Huggingface Diffusers lora LoRA Weights from SAT Checkpoints After completing the training using the above steps, we get a SAT checkpoint with LoRA weights. You can find the file at `{args.save}/1000/1000/mp_rank_00_model_states.pt`. The script for exporting LoRA weights can be found in the CogVideoX repository at `tools/export_sat_lora_weight.py`. After exporting, you can use `load_cogvideox_lora.py` for inference. Export command: ```bash python tools/export_sat_lora_weight.py --sat_pt_path {args.save}/{experiment_name}-09-09-21-10/1000/mp_rank_00_model_states.pt --lora_save_directory {args.save}/export_hf_lora_weights_1/ ``` This training mainly modified the following model structures. The table below lists the corresponding structure mappings for converting to the HF (Hugging Face) format LoRA structure. As you can see, LoRA adds a low-rank weight to the model's attention structure. ``` 'attention.query_key_value.matrix_A.0': 'attn1.to_q.lora_A.weight', 'attention.query_key_value.matrix_A.1': 'attn1.to_k.lora_A.weight', 'attention.query_key_value.matrix_A.2': 'attn1.to_v.lora_A.weight', 'attention.query_key_value.matrix_B.0': 'attn1.to_q.lora_B.weight', 'attention.query_key_value.matrix_B.1': 'attn1.to_k.lora_B.weight', 'attention.query_key_value.matrix_B.2': 'attn1.to_v.lora_B.weight', 'attention.dense.matrix_A.0': 'attn1.to_out.0.lora_A.weight', 'attention.dense.matrix_B.0': 'attn1.to_out.0.lora_B.weight' ``` Using export_sat_lora_weight.py, you can convert the SAT checkpoint into the HF LoRA format. ![alt text](../resources/hf_lora_weights.png)