# SAT CogVideoX-2B [中文阅读](./README_zh.md) [日本語で読む](./README_ja.md) This folder contains the inference code using [SAT](https://github.com/THUDM/SwissArmyTransformer) weights and the fine-tuning code for SAT weights. This code is the framework used by the team to train the model. It has few comments and requires careful study. ## Inference Model ### 1. Ensure that you have correctly installed the dependencies required by this folder. ```shell pip install -r requirements.txt ``` ### 2. Download the model weights ### 2. Download model weights First, go to the SAT mirror to download the model weights. For the CogVideoX-2B model, please download as follows: ```shell mkdir CogVideoX-2b-sat cd CogVideoX-2b-sat wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1 mv 'index.html?dl=1' vae.zip unzip vae.zip wget https://cloud.tsinghua.edu.cn/f/556a3e1329e74f1bac45/?dl=1 mv 'index.html?dl=1' transformer.zip unzip transformer.zip ``` For the CogVideoX-5B model, please download as follows (VAE files are the same): ```shell mkdir CogVideoX-5b-sat cd CogVideoX-5b-sat wget https://cloud.tsinghua.edu.cn/f/fdba7608a49c463ba754/?dl=1 mv 'index.html?dl=1' vae.zip unzip vae.zip ``` Then, you need to go to [Tsinghua Cloud Disk](https://cloud.tsinghua.edu.cn/d/fcef5b3904294a6885e5/?p=%2F&mode=list) to download our model and unzip it. After sorting, the complete model structure of the two models should be as follows: ``` . ├── transformer │ ├── 1000 (or 1) │ │ └── mp_rank_00_model_states.pt │ └── latest └── vae └── 3d-vae.pt ``` Due to large size of model weight file, using `git lfs` is recommended. Installation of `git lfs` can be found [here](https://github.com/git-lfs/git-lfs?tab=readme-ov-file#installing) Next, clone the T5 model, which is not used for training and fine-tuning, but must be used. > T5 model is available on [Modelscope](https://modelscope.cn/models/ZhipuAI/CogVideoX-2b) as well. ```shell git clone https://huggingface.co/THUDM/CogVideoX-2b.git mkdir t5-v1_1-xxl mv CogVideoX-2b/text_encoder/* CogVideoX-2b/tokenizer/* t5-v1_1-xxl ``` By following the above approach, you will obtain a safetensor format T5 file. Ensure that there are no errors when loading it into Deepspeed in Finetune. ``` ├── added_tokens.json ├── config.json ├── model-00001-of-00002.safetensors ├── model-00002-of-00002.safetensors ├── model.safetensors.index.json ├── special_tokens_map.json ├── spiece.model └── tokenizer_config.json 0 directories, 8 files ``` ### 3. Modify the file in `configs/cogvideox_2b.yaml`. ```yaml model: scale_factor: 1.15258426 disable_first_stage_autocast: true log_keys: - txt denoiser_config: target: sgm.modules.diffusionmodules.denoiser.DiscreteDenoiser params: num_idx: 1000 quantize_c_noise: False weighting_config: target: sgm.modules.diffusionmodules.denoiser_weighting.EpsWeighting scaling_config: target: sgm.modules.diffusionmodules.denoiser_scaling.VideoScaling discretization_config: target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization params: shift_scale: 3.0 network_config: target: dit_video_concat.DiffusionTransformer params: time_embed_dim: 512 elementwise_affine: True num_frames: 49 time_compressed_rate: 4 latent_width: 90 latent_height: 60 num_layers: 30 patch_size: 2 in_channels: 16 out_channels: 16 hidden_size: 1920 adm_in_channels: 256 num_attention_heads: 30 transformer_args: checkpoint_activations: True ## using gradient checkpointing vocab_size: 1 max_sequence_length: 64 layernorm_order: pre skip_init: false model_parallel_size: 1 is_decoder: false modules: pos_embed_config: target: dit_video_concat.Basic3DPositionEmbeddingMixin params: text_length: 226 height_interpolation: 1.875 width_interpolation: 1.875 patch_embed_config: target: dit_video_concat.ImagePatchEmbeddingMixin params: text_hidden_size: 4096 adaln_layer_config: target: dit_video_concat.AdaLNMixin params: qk_ln: True final_layer_config: target: dit_video_concat.FinalLayerMixin conditioner_config: target: sgm.modules.GeneralConditioner params: emb_models: - is_trainable: false input_key: txt ucg_rate: 0.1 target: sgm.modules.encoders.modules.FrozenT5Embedder params: model_dir: "{absolute_path/to/your/t5-v1_1-xxl}/t5-v1_1-xxl" # Absolute path to the CogVideoX-2b/t5-v1_1-xxl weights folder max_length: 226 first_stage_config: target: vae_modules.autoencoder.VideoAutoencoderInferenceWrapper params: cp_size: 1 ckpt_path: "{absolute_path/to/your/t5-v1_1-xxl}/CogVideoX-2b-sat/vae/3d-vae.pt" # Absolute path to the CogVideoX-2b-sat/vae/3d-vae.pt folder ignore_keys: [ 'loss' ] loss_config: target: torch.nn.Identity regularizer_config: target: vae_modules.regularizers.DiagonalGaussianRegularizer encoder_config: target: vae_modules.cp_enc_dec.ContextParallelEncoder3D params: double_z: true z_channels: 16 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: [ 1, 2, 2, 4 ] attn_resolutions: [ ] num_res_blocks: 3 dropout: 0.0 gather_norm: True decoder_config: target: vae_modules.cp_enc_dec.ContextParallelDecoder3D params: double_z: True z_channels: 16 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: [ 1, 2, 2, 4 ] attn_resolutions: [ ] num_res_blocks: 3 dropout: 0.0 gather_norm: False loss_fn_config: target: sgm.modules.diffusionmodules.loss.VideoDiffusionLoss params: offset_noise_level: 0 sigma_sampler_config: target: sgm.modules.diffusionmodules.sigma_sampling.DiscreteSampling params: uniform_sampling: True num_idx: 1000 discretization_config: target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization params: shift_scale: 3.0 sampler_config: target: sgm.modules.diffusionmodules.sampling.VPSDEDPMPP2MSampler params: num_steps: 50 verbose: True discretization_config: target: sgm.modules.diffusionmodules.discretizer.ZeroSNRDDPMDiscretization params: shift_scale: 3.0 guider_config: target: sgm.modules.diffusionmodules.guiders.DynamicCFG params: scale: 6 exp: 5 num_steps: 50 ``` ### 4. Modify the file in `configs/inference.yaml`. ```yaml args: latent_channels: 16 mode: inference load: "{absolute_path/to/your}/transformer" # Absolute path to the CogVideoX-2b-sat/transformer folder # load: "{your lora folder} such as zRzRzRzRzRzRzR/lora-disney-08-20-13-28" # This is for Full model without lora adapter batch_size: 1 input_type: txt # You can choose txt for pure text input, or change to cli for command line input input_file: configs/test.txt # Pure text file, which can be edited sampling_num_frames: 13 # Must be 13, 11 or 9 sampling_fps: 8 fp16: True # For CogVideoX-2B # bf16: True # For CogVideoX-5B output_dir: outputs/ force_inference: True ``` + Modify `configs/test.txt` if multiple prompts is required, in which each line makes a prompt. + For better prompt formatting, refer to [convert_demo.py](../inference/convert_demo.py), for which you should set the OPENAI_API_KEY as your environmental variable. + Modify `input_type` in `configs/inference.yaml` if use command line as prompt iuput. ```yaml input_type: cli ``` This allows input from the command line as prompts. Change `output_dir` if you wish to modify the address of the output video ```yaml output_dir: outputs/ ``` It is saved by default in the `.outputs/` folder. ### 5. Run the inference code to perform inference. ```shell bash inference.sh ``` ## Fine-tuning the Model ### Preparing the Dataset The dataset format should be as follows: ``` . ├── labels │   ├── 1.txt │   ├── 2.txt │   ├── ... └── videos ├── 1.mp4 ├── 2.mp4 ├── ... ``` Each text file shares the same name as its corresponding video, serving as the label for that video. Videos and labels should be matched one-to-one. Generally, a single video should not be associated with multiple labels. For style fine-tuning, please prepare at least 50 videos and labels with similar styles to ensure proper fitting. ### Modifying Configuration Files We support two fine-tuning methods: `Lora` and full-parameter fine-tuning. Please note that both methods only fine-tune the `transformer` part and do not modify the `VAE` section. `T5` is used solely as an Encoder. Please modify the `configs/sft.yaml` (for full-parameter fine-tuning) file as follows: ``` # checkpoint_activations: True ## Using gradient checkpointing (Both checkpoint_activations in the config file need to be set to True) model_parallel_size: 1 # Model parallel size experiment_name: lora-disney # Experiment name (do not modify) mode: finetune # Mode (do not modify) load: "{your_CogVideoX-2b-sat_path}/transformer" ## Transformer model path no_load_rng: True # Whether to load random seed train_iters: 1000 # Training iterations eval_iters: 1 # Evaluation iterations eval_interval: 100 # Evaluation interval eval_batch_size: 1 # Evaluation batch size save: ckpts # Model save path save_interval: 100 # Model save interval log_interval: 20 # Log output interval train_data: [ "your train data path" ] valid_data: [ "your val data path" ] # Training and validation datasets can be the same split: 1,0,0 # Training, validation, and test set ratio num_workers: 8 # Number of worker threads for data loader force_train: True # Allow missing keys when loading checkpoint (T5 and VAE are loaded separately) only_log_video_latents: True # Avoid memory overhead caused by VAE decode deepspeed: bf16: enabled: False # For CogVideoX-2B set to False and for CogVideoX-5B set to True fp16: enabled: True # For CogVideoX-2B set to True and for CogVideoX-5B set to False ``` If you wish to use Lora fine-tuning, you also need to modify the `cogvideox__lora` file: Here, take `CogVideoX-2B` as a reference: ``` model: scale_factor: 1.15258426 disable_first_stage_autocast: true not_trainable_prefixes: [ 'all' ] ## Uncomment log_keys: - txt' lora_config: ## Uncomment target: sat.model.finetune.lora2.LoraMixin params: r: 256 ``` ### Modifying Run Scripts Edit `finetune_single_gpu.sh` or `finetune_multi_gpus.sh` to select the configuration file. Below are two examples: 1. If you want to use the `CogVideoX-2B` model and the `Lora` method, you need to modify `finetune_single_gpu.sh` or `finetune_multi_gpus.sh`: ``` run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b_lora.yaml configs/sft.yaml --seed $RANDOM" ``` 2. If you want to use the `CogVideoX-2B` model and the `full-parameter fine-tuning` method, you need to modify `finetune_single_gpu.sh` or `finetune_multi_gpus.sh`: ``` run_cmd="torchrun --standalone --nproc_per_node=8 train_video.py --base configs/cogvideox_2b.yaml configs/sft.yaml --seed $RANDOM" ``` ### Fine-Tuning and Evaluation Run the inference code to start fine-tuning. ``` bash finetune_single_gpu.sh # Single GPU bash finetune_multi_gpus.sh # Multi GPUs ``` ### Using the Fine-Tuned Model The fine-tuned model cannot be merged; here is how to modify the inference configuration file `inference.sh`: ``` run_cmd="$environs python sample_video.py --base configs/cogvideox__lora.yaml configs/inference.yaml --seed 42" ``` Then, execute the code: ``` bash inference.sh ``` ### Converting to Huggingface Diffusers Supported Weights The SAT weight format is different from Huggingface's weight format and needs to be converted. Please run: ```shell python ../tools/convert_weight_sat2hf.py ``` **Note**: This content has not yet been tested with LORA fine-tuning models.