# pytorch_diffusion + derived encoder decoder import math import torch import torch.nn as nn import numpy as np def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb def nonlinearity(x): # swish return x * torch.sigmoid(x) class SpatialNorm(nn.Module): def __init__( self, f_channels, zq_channels, norm_layer=nn.GroupNorm, freeze_norm_layer=False, add_conv=False, **norm_layer_params, ): super().__init__() self.norm_layer = norm_layer(num_channels=f_channels, **norm_layer_params) if freeze_norm_layer: for p in self.norm_layer.parameters: p.requires_grad = False self.add_conv = add_conv if self.add_conv: self.conv = nn.Conv2d(zq_channels, zq_channels, kernel_size=3, stride=1, padding=1) self.conv_y = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) self.conv_b = nn.Conv2d(zq_channels, f_channels, kernel_size=1, stride=1, padding=0) def forward(self, f, zq): f_size = f.shape[-2:] zq = torch.nn.functional.interpolate(zq, size=f_size, mode="nearest") if self.add_conv: zq = self.conv(zq) norm_f = self.norm_layer(f) new_f = norm_f * self.conv_y(zq) + self.conv_b(zq) return new_f def Normalize(in_channels, zq_ch, add_conv): return SpatialNorm( in_channels, zq_ch, norm_layer=nn.GroupNorm, freeze_norm_layer=False, add_conv=add_conv, num_groups=32, eps=1e-6, affine=True, ) class Upsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) def forward(self, x): x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=2, padding=0 ) def forward(self, x): if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class ResnetBlock(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, zq_ch=None, add_conv=False, ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels, zq_ch, add_conv=add_conv) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels, zq_ch, add_conv=add_conv) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=1, padding=1 ) else: self.nin_shortcut = torch.nn.Conv2d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x, temb, zq): h = x h = self.norm1(h, zq) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None] h = self.norm2(h, zq) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock(nn.Module): def __init__(self, in_channels, zq_ch=None, add_conv=False): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels, zq_ch, add_conv=add_conv) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x, zq): h_ = x h_ = self.norm(h_, zq) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c) ** (-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) return x + h_ class MOVQDecoder(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, give_pre_end=False, zq_ch=None, add_conv=False, **ignorekwargs, ): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels self.give_pre_end = give_pre_end # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,) + tuple(ch_mult) block_in = ch * ch_mult[self.num_resolutions - 1] curr_res = resolution // 2 ** (self.num_resolutions - 1) self.z_shape = (1, z_channels, curr_res, curr_res) print( "Working with z of shape {} = {} dimensions.".format( self.z_shape, np.prod(self.z_shape) ) ) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, zq_ch=zq_ch, add_conv=add_conv, ) self.mid.attn_1 = AttnBlock(block_in, zq_ch, add_conv=add_conv) self.mid.block_2 = ResnetBlock( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, zq_ch=zq_ch, add_conv=add_conv, ) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks + 1): block.append( ResnetBlock( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, zq_ch=zq_ch, add_conv=add_conv, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in, zq_ch, add_conv=add_conv)) up = nn.Module() up.block = block up.attn = attn if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = curr_res * 2 self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in, zq_ch, add_conv=add_conv) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z, zq): # assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb, zq) h = self.mid.attn_1(h, zq) h = self.mid.block_2(h, temb, zq) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h, temb, zq) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h, zq) if i_level != 0: h = self.up[i_level].upsample(h) # end if self.give_pre_end: return h h = self.norm_out(h, zq) h = nonlinearity(h) h = self.conv_out(h) return h def forward_with_features_output(self, z, zq): # assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None output_features = {} # z to block_in h = self.conv_in(z) output_features["conv_in"] = h # middle h = self.mid.block_1(h, temb, zq) output_features["mid_block_1"] = h h = self.mid.attn_1(h, zq) output_features["mid_attn_1"] = h h = self.mid.block_2(h, temb, zq) output_features["mid_block_2"] = h # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks + 1): h = self.up[i_level].block[i_block](h, temb, zq) output_features[f"up_{i_level}_block_{i_block}"] = h if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h, zq) output_features[f"up_{i_level}_attn_{i_block}"] = h if i_level != 0: h = self.up[i_level].upsample(h) output_features[f"up_{i_level}_upsample"] = h # end if self.give_pre_end: return h h = self.norm_out(h, zq) output_features["norm_out"] = h h = nonlinearity(h) output_features["nonlinearity"] = h h = self.conv_out(h) output_features["conv_out"] = h return h, output_features