# pytorch_diffusion + derived encoder decoder import math import torch import torch.nn as nn import torch.nn.functional as F import numpy as np from beartype import beartype from beartype.typing import Union, Tuple, Optional, List from einops import rearrange def cast_tuple(t, length=1): return t if isinstance(t, tuple) else ((t,) * length) def divisible_by(num, den): return (num % den) == 0 def is_odd(n): return not divisible_by(n, 2) def get_timestep_embedding(timesteps, embedding_dim): """ This matches the implementation in Denoising Diffusion Probabilistic Models: From Fairseq. Build sinusoidal embeddings. This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of "Attention Is All You Need". """ assert len(timesteps.shape) == 1 half_dim = embedding_dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) emb = emb.to(device=timesteps.device) emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb def nonlinearity(x): # swish return x * torch.sigmoid(x) class CausalConv3d(nn.Module): @beartype def __init__( self, chan_in, chan_out, kernel_size: Union[int, Tuple[int, int, int]], pad_mode="constant", **kwargs, ): super().__init__() kernel_size = cast_tuple(kernel_size, 3) time_kernel_size, height_kernel_size, width_kernel_size = kernel_size assert is_odd(height_kernel_size) and is_odd(width_kernel_size) dilation = kwargs.pop("dilation", 1) stride = kwargs.pop("stride", 1) self.pad_mode = pad_mode time_pad = dilation * (time_kernel_size - 1) + (1 - stride) height_pad = height_kernel_size // 2 width_pad = width_kernel_size // 2 self.height_pad = height_pad self.width_pad = width_pad self.time_pad = time_pad self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) stride = (stride, 1, 1) dilation = (dilation, 1, 1) self.conv = nn.Conv3d( chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs ) def forward(self, x): if self.pad_mode == "constant": causal_padding_3d = ( self.time_pad, 0, self.width_pad, self.width_pad, self.height_pad, self.height_pad, ) x = F.pad(x, causal_padding_3d, mode="constant", value=0) elif self.pad_mode == "first": pad_x = torch.cat([x[:, :, :1]] * self.time_pad, dim=2) x = torch.cat([pad_x, x], dim=2) causal_padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) x = F.pad(x, causal_padding_2d, mode="constant", value=0) elif self.pad_mode == "reflect": # reflect padding reflect_x = x[:, :, 1 : self.time_pad + 1, :, :].flip(dims=[2]) if reflect_x.shape[2] < self.time_pad: reflect_x = torch.cat( [torch.zeros_like(x[:, :, :1, :, :])] * (self.time_pad - reflect_x.shape[2]) + [reflect_x], dim=2, ) x = torch.cat([reflect_x, x], dim=2) causal_padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) x = F.pad(x, causal_padding_2d, mode="constant", value=0) else: raise ValueError("Invalid pad mode") return self.conv(x) def Normalize3D(in_channels): # same for 3D and 2D return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) class Upsample3D(nn.Module): def __init__(self, in_channels, with_conv, compress_time=False): super().__init__() self.with_conv = with_conv if self.with_conv: self.conv = torch.nn.Conv2d( in_channels, in_channels, kernel_size=3, stride=1, padding=1 ) self.compress_time = compress_time def forward(self, x): if self.compress_time: if x.shape[2] > 1: # split first frame x_first, x_rest = x[:, :, 0], x[:, :, 1:] x_first = torch.nn.functional.interpolate(x_first, scale_factor=2.0, mode="nearest") x_rest = torch.nn.functional.interpolate(x_rest, scale_factor=2.0, mode="nearest") x = torch.cat([x_first[:, :, None, :, :], x_rest], dim=2) else: x = x.squeeze(2) x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") x = x[:, :, None, :, :] else: # only interpolate 2D t = x.shape[2] x = rearrange(x, "b c t h w -> (b t) c h w") x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") x = rearrange(x, "(b t) c h w -> b c t h w", t=t) if self.with_conv: t = x.shape[2] x = rearrange(x, "b c t h w -> (b t) c h w") x = self.conv(x) x = rearrange(x, "(b t) c h w -> b c t h w", t=t) return x class DownSample3D(nn.Module): def __init__(self, in_channels, with_conv, compress_time=False, out_channels=None): super().__init__() self.with_conv = with_conv if out_channels is None: out_channels = in_channels if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d( in_channels, out_channels, kernel_size=3, stride=2, padding=0 ) self.compress_time = compress_time def forward(self, x): if self.compress_time: h, w = x.shape[-2:] x = rearrange(x, "b c t h w -> (b h w) c t") # split first frame x_first, x_rest = x[..., 0], x[..., 1:] if x_rest.shape[-1] > 0: x_rest = torch.nn.functional.avg_pool1d(x_rest, kernel_size=2, stride=2) x = torch.cat([x_first[..., None], x_rest], dim=-1) x = rearrange(x, "(b h w) c t -> b c t h w", h=h, w=w) if self.with_conv: pad = (0, 1, 0, 1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) t = x.shape[2] x = rearrange(x, "b c t h w -> (b t) c h w") x = self.conv(x) x = rearrange(x, "(b t) c h w -> b c t h w", t=t) else: t = x.shape[2] x = rearrange(x, "b c t h w -> (b t) c h w") x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) x = rearrange(x, "(b t) c h w -> b c t h w", t=t) return x class ResnetBlock3D(nn.Module): def __init__( self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, pad_mode="constant", ): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize3D(in_channels) # self.conv1 = torch.nn.Conv3d(in_channels, # out_channels, # kernel_size=3, # stride=1, # padding=1) self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, pad_mode=pad_mode) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize3D(out_channels) self.dropout = torch.nn.Dropout(dropout) # self.conv2 = torch.nn.Conv3d(out_channels, # out_channels, # kernel_size=3, # stride=1, # padding=1) self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, pad_mode=pad_mode) if self.in_channels != self.out_channels: if self.use_conv_shortcut: # self.conv_shortcut = torch.nn.Conv3d(in_channels, # out_channels, # kernel_size=3, # stride=1, # padding=1) self.conv_shortcut = CausalConv3d( in_channels, out_channels, kernel_size=3, pad_mode=pad_mode ) else: self.nin_shortcut = torch.nn.Conv3d( in_channels, out_channels, kernel_size=1, stride=1, padding=0 ) # self.nin_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=1, pad_mode=pad_mode) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None, None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x + h class AttnBlock2D(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize3D(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d( in_channels, in_channels, kernel_size=1, stride=1, padding=0 ) def forward(self, x): h_ = x h_ = self.norm(h_) t = h_.shape[2] h_ = rearrange(h_, "b c t h w -> (b t) c h w") q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b, c, h, w = q.shape q = q.reshape(b, c, h * w) q = q.permute(0, 2, 1) # b,hw,c k = k.reshape(b, c, h * w) # b,c,hw # # original version, nan in fp16 # w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] # w_ = w_ * (int(c)**(-0.5)) # # implement c**-0.5 on q q = q * (int(c) ** (-0.5)) w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b, c, h * w) w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b, c, h, w) h_ = self.proj_out(h_) h_ = rearrange(h_, "(b t) c h w -> b c t h w", t=t) return x + h_ class Encoder3D(nn.Module): def __init__( self, *, ch, out_ch, ch_mult=(1, 2, 4, 8), num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=True, pad_mode="first", temporal_compress_times=4, **ignore_kwargs, ): super().__init__() self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # log2 of temporal_compress_times self.temporal_compress_level = int(np.log2(temporal_compress_times)) # downsampling # self.conv_in = torch.nn.Conv3d(in_channels, # self.ch, # kernel_size=3, # stride=1, # padding=1) self.conv_in = CausalConv3d(in_channels, self.ch, kernel_size=3, pad_mode=pad_mode) curr_res = resolution in_ch_mult = (1,) + tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch * in_ch_mult[i_level] block_out = ch * ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append( ResnetBlock3D( in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout, pad_mode=pad_mode, ) ) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock2D(block_in)) down = nn.Module() down.block = block down.attn = attn if i_level != self.num_resolutions - 1: if i_level < self.temporal_compress_level: down.downsample = DownSample3D(block_in, resamp_with_conv, compress_time=True) else: down.downsample = DownSample3D(block_in, resamp_with_conv, compress_time=False) curr_res = curr_res // 2 self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock3D( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, pad_mode=pad_mode, ) # remove attention block # self.mid.attn_1 = AttnBlock2D(block_in) self.mid.block_2 = ResnetBlock3D( in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, pad_mode=pad_mode, ) # end self.norm_out = Normalize3D(block_in) # self.conv_out = torch.nn.Conv3d(block_in, # 2*z_channels if double_z else z_channels, # kernel_size=3, # stride=1, # padding=1) self.conv_out = CausalConv3d( block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, pad_mode=pad_mode ) def forward(self, x, use_cp=False): # assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if i_level != self.num_resolutions - 1: hs.append(self.down[i_level].downsample(hs[-1])) # middle h = hs[-1] h = self.mid.block_1(h, temb) # h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h