import hashlib from pathlib import Path from typing import TYPE_CHECKING, Any, Dict, List, Tuple import torch from accelerate.logging import get_logger from safetensors.torch import load_file, save_file from torch.utils.data import Dataset from torchvision import transforms from typing_extensions import override from finetune.constants import LOG_LEVEL, LOG_NAME from .utils import ( load_prompts, load_videos, preprocess_video_with_buckets, preprocess_video_with_resize, ) if TYPE_CHECKING: from finetune.trainer import Trainer # Must import after torch because this can sometimes lead to a nasty segmentation fault, or stack smashing error # Very few bug reports but it happens. Look in decord Github issues for more relevant information. import decord # isort:skip decord.bridge.set_bridge("torch") logger = get_logger(LOG_NAME, LOG_LEVEL) class BaseT2VDataset(Dataset): """ Base dataset class for Text-to-Video (T2V) training. This dataset loads prompts and videos for T2V training. Args: data_root (str): Root directory containing the dataset files caption_column (str): Path to file containing text prompts/captions video_column (str): Path to file containing video paths device (torch.device): Device to load the data on encode_video_fn (Callable[[torch.Tensor], torch.Tensor], optional): Function to encode videos """ def __init__( self, data_root: str, caption_column: str, video_column: str, device: torch.device = None, trainer: "Trainer" = None, *args, **kwargs, ) -> None: super().__init__() data_root = Path(data_root) self.prompts = load_prompts(data_root / caption_column) self.videos = load_videos(data_root / video_column) self.device = device self.encode_video = trainer.encode_video self.encode_text = trainer.encode_text self.trainer = trainer # Check if all video files exist if any(not path.is_file() for path in self.videos): raise ValueError( f"Some video files were not found. Please ensure that all video files exist in the dataset directory. Missing file: {next(path for path in self.videos if not path.is_file())}" ) # Check if number of prompts matches number of videos if len(self.videos) != len(self.prompts): raise ValueError( f"Expected length of prompts and videos to be the same but found {len(self.prompts)=} and {len(self.videos)=}. Please ensure that the number of caption prompts and videos match in your dataset." ) def __len__(self) -> int: return len(self.videos) def __getitem__(self, index: int) -> Dict[str, Any]: if isinstance(index, list): # Here, index is actually a list of data objects that we need to return. # The BucketSampler should ideally return indices. But, in the sampler, we'd like # to have information about num_frames, height and width. Since this is not stored # as metadata, we need to read the video to get this information. You could read this # information without loading the full video in memory, but we do it anyway. In order # to not load the video twice (once to get the metadata, and once to return the loaded video # based on sampled indices), we cache it in the BucketSampler. When the sampler is # to yield, we yield the cache data instead of indices. So, this special check ensures # that data is not loaded a second time. PRs are welcome for improvements. return index prompt = self.prompts[index] video = self.videos[index] train_resolution_str = "x".join(str(x) for x in self.trainer.args.train_resolution) cache_dir = self.trainer.args.data_root / "cache" video_latent_dir = ( cache_dir / "video_latent" / self.trainer.args.model_name / train_resolution_str ) prompt_embeddings_dir = cache_dir / "prompt_embeddings" video_latent_dir.mkdir(parents=True, exist_ok=True) prompt_embeddings_dir.mkdir(parents=True, exist_ok=True) prompt_hash = str(hashlib.sha256(prompt.encode()).hexdigest()) prompt_embedding_path = prompt_embeddings_dir / (prompt_hash + ".safetensors") encoded_video_path = video_latent_dir / (video.stem + ".safetensors") if prompt_embedding_path.exists(): prompt_embedding = load_file(prompt_embedding_path)["prompt_embedding"] logger.debug( f"process {self.trainer.accelerator.process_index}: Loaded prompt embedding from {prompt_embedding_path}", main_process_only=False, ) else: prompt_embedding = self.encode_text(prompt) prompt_embedding = prompt_embedding.to("cpu") # [1, seq_len, hidden_size] -> [seq_len, hidden_size] prompt_embedding = prompt_embedding[0] save_file({"prompt_embedding": prompt_embedding}, prompt_embedding_path) logger.info( f"Saved prompt embedding to {prompt_embedding_path}", main_process_only=False ) if encoded_video_path.exists(): # encoded_video = torch.load(encoded_video_path, weights_only=True) encoded_video = load_file(encoded_video_path)["encoded_video"] logger.debug(f"Loaded encoded video from {encoded_video_path}", main_process_only=False) # shape of image: [C, H, W] else: frames = self.preprocess(video) frames = frames.to(self.device) # Current shape of frames: [F, C, H, W] frames = self.video_transform(frames) # Convert to [B, C, F, H, W] frames = frames.unsqueeze(0) frames = frames.permute(0, 2, 1, 3, 4).contiguous() encoded_video = self.encode_video(frames) # [1, C, F, H, W] -> [C, F, H, W] encoded_video = encoded_video[0] encoded_video = encoded_video.to("cpu") save_file({"encoded_video": encoded_video}, encoded_video_path) logger.info(f"Saved encoded video to {encoded_video_path}", main_process_only=False) # shape of encoded_video: [C, F, H, W] return { "prompt_embedding": prompt_embedding, "encoded_video": encoded_video, "video_metadata": { "num_frames": encoded_video.shape[1], "height": encoded_video.shape[2], "width": encoded_video.shape[3], }, } def preprocess(self, video_path: Path) -> torch.Tensor: """ Loads and preprocesses a video. Args: video_path: Path to the video file to load. Returns: torch.Tensor: Video tensor of shape [F, C, H, W] where: - F is number of frames - C is number of channels (3 for RGB) - H is height - W is width """ raise NotImplementedError("Subclass must implement this method") def video_transform(self, frames: torch.Tensor) -> torch.Tensor: """ Applies transformations to a video. Args: frames (torch.Tensor): A 4D tensor representing a video with shape [F, C, H, W] where: - F is number of frames - C is number of channels (3 for RGB) - H is height - W is width Returns: torch.Tensor: The transformed video tensor with the same shape as the input """ raise NotImplementedError("Subclass must implement this method") class T2VDatasetWithResize(BaseT2VDataset): """ A dataset class for text-to-video generation that resizes inputs to fixed dimensions. This class preprocesses videos by resizing them to specified dimensions: - Videos are resized to max_num_frames x height x width Args: max_num_frames (int): Maximum number of frames to extract from videos height (int): Target height for resizing videos width (int): Target width for resizing videos """ def __init__(self, max_num_frames: int, height: int, width: int, *args, **kwargs) -> None: super().__init__(*args, **kwargs) self.max_num_frames = max_num_frames self.height = height self.width = width self.__frame_transform = transforms.Compose( [transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)] ) @override def preprocess(self, video_path: Path) -> torch.Tensor: return preprocess_video_with_resize( video_path, self.max_num_frames, self.height, self.width, ) @override def video_transform(self, frames: torch.Tensor) -> torch.Tensor: return torch.stack([self.__frame_transform(f) for f in frames], dim=0) class T2VDatasetWithBuckets(BaseT2VDataset): def __init__( self, video_resolution_buckets: List[Tuple[int, int, int]], vae_temporal_compression_ratio: int, vae_height_compression_ratio: int, vae_width_compression_ratio: int, *args, **kwargs, ) -> None: """ """ super().__init__(*args, **kwargs) self.video_resolution_buckets = [ ( int(b[0] / vae_temporal_compression_ratio), int(b[1] / vae_height_compression_ratio), int(b[2] / vae_width_compression_ratio), ) for b in video_resolution_buckets ] self.__frame_transform = transforms.Compose( [transforms.Lambda(lambda x: x / 255.0 * 2.0 - 1.0)] ) @override def preprocess(self, video_path: Path) -> torch.Tensor: return preprocess_video_with_buckets(video_path, self.video_resolution_buckets) @override def video_transform(self, frames: torch.Tensor) -> torch.Tensor: return torch.stack([self.__frame_transform(f) for f in frames], dim=0)