""" This script performs DDIM inversion for video frames using a pre-trained model and generates a video reconstruction based on a provided prompt. It utilizes the CogVideoX pipeline to process video frames, apply the DDIM inverse scheduler, and produce an output video. Usage: python script.py --model-path /path/to/model --prompt "a prompt" --video-path /path/to/video.mp4 --output-path /path/to/output Author: LittleNyima """ import argparse import math import os from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast import decord import torch import torch.nn.functional as F import torchvision.transforms as T from diffusers.models.attention_processor import Attention, CogVideoXAttnProcessor2_0 from diffusers.models.autoencoders import AutoencoderKLCogVideoX from diffusers.models.embeddings import apply_rotary_emb from diffusers.models.transformers.cogvideox_transformer_3d import CogVideoXBlock, CogVideoXTransformer3DModel from diffusers.pipelines.cogvideo.pipeline_cogvideox import CogVideoXPipeline, retrieve_timesteps from diffusers.schedulers import CogVideoXDDIMScheduler, DDIMInverseScheduler from diffusers.utils import export_to_video class DDIMInversionArguments(TypedDict): model_path: str prompt: str video_path: str output_path: str guidance_scale: float num_inference_steps: int skip_frames_start: int skip_frames_end: int frame_sample_step: Optional[int] max_num_frames: int width: int height: int fps: int dtype: torch.dtype seed: int device: torch.device def get_args() -> DDIMInversionArguments: parser = argparse.ArgumentParser() parser.add_argument("--model-path", type=str, required=True, help="Path of the pretrained model") parser.add_argument("--prompt", type=str, required=True, help="Prompt for the direct sample procedure") parser.add_argument("--video-path", type=str, required=True, help="Path of the video for inversion") parser.add_argument("--output-path", type=str, default="output", help="Path of the output videos") parser.add_argument("--guidance-scale", type=float, default=6.0, help="Classifier-free guidance scale") parser.add_argument("--num-inference-steps", type=int, default=50, help="Number of inference steps") parser.add_argument("--skip-frames-start", type=int, default=0, help="Number of skipped frames from the start") parser.add_argument("--skip-frames-end", type=int, default=0, help="Number of skipped frames from the end") parser.add_argument("--frame-sample-step", type=int, default=None, help="Temporal stride of the sampled frames") parser.add_argument("--max-num-frames", type=int, default=81, help="Max number of sampled frames") parser.add_argument("--width", type=int, default=720, help="Resized width of the video frames") parser.add_argument("--height", type=int, default=480, help="Resized height of the video frames") parser.add_argument("--fps", type=int, default=8, help="Frame rate of the output videos") parser.add_argument("--dtype", type=str, default="bf16", choices=["bf16", "fp16"], help="Dtype of the model") parser.add_argument("--seed", type=int, default=42, help="Seed for the random number generator") parser.add_argument("--device", type=str, default="cuda", choices=["cuda", "cpu"], help="Device for inference") args = parser.parse_args() args.dtype = torch.bfloat16 if args.dtype == "bf16" else torch.float16 args.device = torch.device(args.device) return DDIMInversionArguments(**vars(args)) class CogVideoXAttnProcessor2_0ForDDIMInversion(CogVideoXAttnProcessor2_0): def __init__(self): super().__init__() def calculate_attention( self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attn: Attention, batch_size: int, image_seq_length: int, text_seq_length: int, attention_mask: Optional[torch.Tensor], image_rotary_emb: Optional[torch.Tensor], ) -> Tuple[torch.Tensor, torch.Tensor]: inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # Apply RoPE if needed if image_rotary_emb is not None: query[:, :, text_seq_length:] = apply_rotary_emb(query[:, :, text_seq_length:], image_rotary_emb) if not attn.is_cross_attention: if key.size(2) == query.size(2): # Attention for reference hidden states key[:, :, text_seq_length:] = apply_rotary_emb(key[:, :, text_seq_length:], image_rotary_emb) else: # RoPE should be applied to each group of image tokens key[:, :, text_seq_length : text_seq_length + image_seq_length] = apply_rotary_emb( key[:, :, text_seq_length : text_seq_length + image_seq_length], image_rotary_emb ) key[:, :, text_seq_length * 2 + image_seq_length :] = apply_rotary_emb( key[:, :, text_seq_length * 2 + image_seq_length :], image_rotary_emb ) hidden_states = F.scaled_dot_product_attention( query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False ) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states, hidden_states = hidden_states.split( [text_seq_length, hidden_states.size(1) - text_seq_length], dim=1 ) return hidden_states, encoder_hidden_states def __call__( self, attn: Attention, hidden_states: torch.Tensor, encoder_hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, image_rotary_emb: Optional[torch.Tensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: image_seq_length = hidden_states.size(1) text_seq_length = encoder_hidden_states.size(1) hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) if attention_mask is not None: attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) query = attn.to_q(hidden_states) key = attn.to_k(hidden_states) value = attn.to_v(hidden_states) query, query_reference = query.chunk(2) key, key_reference = key.chunk(2) value, value_reference = value.chunk(2) batch_size = batch_size // 2 hidden_states, encoder_hidden_states = self.calculate_attention( query=query, key=torch.cat((key, key_reference), dim=1), value=torch.cat((value, value_reference), dim=1), attn=attn, batch_size=batch_size, image_seq_length=image_seq_length, text_seq_length=text_seq_length, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) hidden_states_reference, encoder_hidden_states_reference = self.calculate_attention( query=query_reference, key=key_reference, value=value_reference, attn=attn, batch_size=batch_size, image_seq_length=image_seq_length, text_seq_length=text_seq_length, attention_mask=attention_mask, image_rotary_emb=image_rotary_emb, ) return ( torch.cat((hidden_states, hidden_states_reference)), torch.cat((encoder_hidden_states, encoder_hidden_states_reference)), ) class OverrideAttnProcessors: def __init__(self, transformer: CogVideoXTransformer3DModel): self.transformer = transformer self.original_processors = {} def __enter__(self): for block in self.transformer.transformer_blocks: block = cast(CogVideoXBlock, block) self.original_processors[id(block)] = block.attn1.get_processor() block.attn1.set_processor(CogVideoXAttnProcessor2_0ForDDIMInversion()) def __exit__(self, _0, _1, _2): for block in self.transformer.transformer_blocks: block = cast(CogVideoXBlock, block) block.attn1.set_processor(self.original_processors[id(block)]) def get_video_frames( video_path: str, width: int, height: int, skip_frames_start: int, skip_frames_end: int, max_num_frames: int, frame_sample_step: Optional[int], ) -> torch.FloatTensor: with decord.bridge.use_torch(): video_reader = decord.VideoReader(uri=video_path, width=width, height=height) video_num_frames = len(video_reader) start_frame = min(skip_frames_start, video_num_frames) end_frame = max(0, video_num_frames - skip_frames_end) if end_frame <= start_frame: indices = [start_frame] elif end_frame - start_frame <= max_num_frames: indices = list(range(start_frame, end_frame)) else: step = frame_sample_step or (end_frame - start_frame) // max_num_frames indices = list(range(start_frame, end_frame, step)) frames = video_reader.get_batch(indices=indices) frames = frames[:max_num_frames].float() # ensure that we don't go over the limit # Choose first (4k + 1) frames as this is how many is required by the VAE selected_num_frames = frames.size(0) remainder = (3 + selected_num_frames) % 4 if remainder != 0: frames = frames[:-remainder] assert frames.size(0) % 4 == 1 # Normalize the frames transform = T.Lambda(lambda x: x / 255.0 * 2.0 - 1.0) frames = torch.stack(tuple(map(transform, frames)), dim=0) return frames.permute(0, 3, 1, 2).contiguous() # [F, C, H, W] def encode_video_frames(vae: AutoencoderKLCogVideoX, video_frames: torch.FloatTensor) -> torch.FloatTensor: video_frames = video_frames.to(device=vae.device, dtype=vae.dtype) video_frames = video_frames.unsqueeze(0).permute(0, 2, 1, 3, 4) # [B, C, F, H, W] latent_dist = vae.encode(x=video_frames).latent_dist.sample().transpose(1, 2) return latent_dist * vae.config.scaling_factor def export_latents_to_video(pipeline: CogVideoXPipeline, latents: torch.FloatTensor, video_path: str, fps: int): video = pipeline.decode_latents(latents) frames = pipeline.video_processor.postprocess_video(video=video, output_type="pil") export_to_video(video_frames=frames[0], output_video_path=video_path, fps=fps) # Modified from CogVideoXPipeline.__call__ def sample( pipeline: CogVideoXPipeline, latents: torch.FloatTensor, scheduler: Union[DDIMInverseScheduler, CogVideoXDDIMScheduler], prompt: Optional[Union[str, List[str]]] = None, negative_prompt: Optional[Union[str, List[str]]] = None, num_inference_steps: int = 50, guidance_scale: float = 6, use_dynamic_cfg: bool = False, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, attention_kwargs: Optional[Dict[str, Any]] = None, reference_latents: torch.FloatTensor = None, ) -> torch.FloatTensor: pipeline._guidance_scale = guidance_scale pipeline._attention_kwargs = attention_kwargs pipeline._interrupt = False device = pipeline._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt prompt_embeds, negative_prompt_embeds = pipeline.encode_prompt( prompt, negative_prompt, do_classifier_free_guidance, device=device, ) if do_classifier_free_guidance: prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) if reference_latents is not None: prompt_embeds = torch.cat([prompt_embeds] * 2, dim=0) # 4. Prepare timesteps timesteps, num_inference_steps = retrieve_timesteps(scheduler, num_inference_steps, device) pipeline._num_timesteps = len(timesteps) # 5. Prepare latents. latents = latents.to(device=device) * scheduler.init_noise_sigma # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = pipeline.prepare_extra_step_kwargs(generator, eta) if isinstance(scheduler, DDIMInverseScheduler): # Inverse scheduler does not accept extra kwargs extra_step_kwargs = {} # 7. Create rotary embeds if required image_rotary_emb = ( pipeline._prepare_rotary_positional_embeddings( height=latents.size(3) * pipeline.vae_scale_factor_spatial, width=latents.size(4) * pipeline.vae_scale_factor_spatial, num_frames=latents.size(1), device=device, ) if pipeline.transformer.config.use_rotary_positional_embeddings else None ) # 8. Denoising loop num_warmup_steps = max(len(timesteps) - num_inference_steps * scheduler.order, 0) trajectory = torch.zeros_like(latents).unsqueeze(0).repeat(len(timesteps), 1, 1, 1, 1, 1) with pipeline.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): if pipeline.interrupt: continue latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents if reference_latents is not None: reference = reference_latents[i] reference = torch.cat([reference] * 2) if do_classifier_free_guidance else reference latent_model_input = torch.cat([latent_model_input, reference], dim=0) latent_model_input = scheduler.scale_model_input(latent_model_input, t) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML timestep = t.expand(latent_model_input.shape[0]) # predict noise model_output noise_pred = pipeline.transformer( hidden_states=latent_model_input, encoder_hidden_states=prompt_embeds, timestep=timestep, image_rotary_emb=image_rotary_emb, attention_kwargs=attention_kwargs, return_dict=False, )[0] noise_pred = noise_pred.float() if reference_latents is not None: # Recover the original batch size noise_pred, _ = noise_pred.chunk(2) # perform guidance if use_dynamic_cfg: pipeline._guidance_scale = 1 + guidance_scale * ( (1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2 ) if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + pipeline.guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the noisy sample x_t-1 -> x_t latents = scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] latents = latents.to(prompt_embeds.dtype) trajectory[i] = latents if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % scheduler.order == 0): progress_bar.update() # Offload all models pipeline.maybe_free_model_hooks() return trajectory @torch.no_grad() def ddim_inversion( model_path: str, prompt: str, video_path: str, output_path: str, guidance_scale: float, num_inference_steps: int, skip_frames_start: int, skip_frames_end: int, frame_sample_step: Optional[int], max_num_frames: int, width: int, height: int, fps: int, dtype: torch.dtype, seed: int, device: torch.device, ): pipeline: CogVideoXPipeline = CogVideoXPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device=device) video_frames = get_video_frames( video_path=video_path, width=width, height=height, skip_frames_start=skip_frames_start, skip_frames_end=skip_frames_end, max_num_frames=max_num_frames, frame_sample_step=frame_sample_step, ).to(device=device) video_latents = encode_video_frames(vae=pipeline.vae, video_frames=video_frames) inverse_scheduler = DDIMInverseScheduler(**pipeline.scheduler.config) inverse_latents = sample( pipeline=pipeline, latents=video_latents, scheduler=inverse_scheduler, prompt="", num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.Generator(device=device).manual_seed(seed), ) with OverrideAttnProcessors(transformer=pipeline.transformer): recon_latents = sample( pipeline=pipeline, latents=torch.randn_like(video_latents), scheduler=pipeline.scheduler, prompt=prompt, num_inference_steps=num_inference_steps, guidance_scale=guidance_scale, generator=torch.Generator(device=device).manual_seed(seed), reference_latents=reversed(inverse_latents), ) filename, _ = os.path.splitext(os.path.basename(video_path)) inverse_video_path = os.path.join(output_path, f"{filename}_inversion.mp4") recon_video_path = os.path.join(output_path, f"{filename}_reconstruction.mp4") export_latents_to_video(pipeline, inverse_latents[-1], inverse_video_path, fps) export_latents_to_video(pipeline, recon_latents[-1], recon_video_path, fps) if __name__ == "__main__": arguments = get_args() ddim_inversion(**arguments)