""" This script is designed to demonstrate how to use the CogVideoX-2b VAE model for video encoding and decoding. It allows you to encode a video into a latent representation, decode it back into a video, or perform both operations sequentially. Before running the script, make sure to clone the CogVideoX Hugging Face model repository and set the `{your local diffusers path}` argument to the path of the cloned repository. Command 1: Encoding Video Encodes the video located at ../resources/videos/1.mp4 using the CogVideoX-5b VAE model. Memory Usage: ~18GB of GPU memory for encoding. If you do not have enough GPU memory, we provide a pre-encoded tensor file (encoded.pt) in the resources folder, and you can still run the decoding command. $ python cli_vae_demo.py --model_path {your local diffusers path}/CogVideoX-2b/vae/ --video_path ../resources/videos/1.mp4 --mode encode Command 2: Decoding Video Decodes the latent representation stored in encoded.pt back into a video. Memory Usage: ~4GB of GPU memory for decoding. $ python cli_vae_demo.py --model_path {your local diffusers path}/CogVideoX-2b/vae/ --encoded_path ./encoded.pt --mode decode Command 3: Encoding and Decoding Video Encodes the video located at ../resources/videos/1.mp4 and then immediately decodes it. Memory Usage: 34GB for encoding + 19GB for decoding (sequentially). $ python cli_vae_demo.py --model_path {your local diffusers path}/CogVideoX-2b/vae/ --video_path ../resources/videos/1.mp4 --mode both """ import argparse import torch import imageio from diffusers import AutoencoderKLCogVideoX from torchvision import transforms import numpy as np def encode_video(model_path, video_path, dtype, device): """ Loads a pre-trained AutoencoderKLCogVideoX model and encodes the video frames. Parameters: - model_path (str): The path to the pre-trained model. - video_path (str): The path to the video file. - dtype (torch.dtype): The data type for computation. - device (str): The device to use for computation (e.g., "cuda" or "cpu"). Returns: - torch.Tensor: The encoded video frames. """ model = AutoencoderKLCogVideoX.from_pretrained(model_path, torch_dtype=dtype).to(device) model.enable_slicing() model.enable_tiling() video_reader = imageio.get_reader(video_path, "ffmpeg") frames = [transforms.ToTensor()(frame) for frame in video_reader] video_reader.close() frames_tensor = torch.stack(frames).to(device).permute(1, 0, 2, 3).unsqueeze(0).to(dtype) with torch.no_grad(): encoded_frames = model.encode(frames_tensor)[0].sample() return encoded_frames def decode_video(model_path, encoded_tensor_path, dtype, device): """ Loads a pre-trained AutoencoderKLCogVideoX model and decodes the encoded video frames. Parameters: - model_path (str): The path to the pre-trained model. - encoded_tensor_path (str): The path to the encoded tensor file. - dtype (torch.dtype): The data type for computation. - device (str): The device to use for computation (e.g., "cuda" or "cpu"). Returns: - torch.Tensor: The decoded video frames. """ model = AutoencoderKLCogVideoX.from_pretrained(model_path, torch_dtype=dtype).to(device) encoded_frames = torch.load(encoded_tensor_path, weights_only=True).to(device).to(dtype) with torch.no_grad(): decoded_frames = model.decode(encoded_frames).sample return decoded_frames def save_video(tensor, output_path): """ Saves the video frames to a video file. Parameters: - tensor (torch.Tensor): The video frames' tensor. - output_path (str): The path to save the output video. """ tensor = tensor.to(dtype=torch.float32) frames = tensor[0].squeeze(0).permute(1, 2, 3, 0).cpu().numpy() frames = np.clip(frames, 0, 1) * 255 frames = frames.astype(np.uint8) writer = imageio.get_writer(output_path + "/output.mp4", fps=8) for frame in frames: writer.append_data(frame) writer.close() if __name__ == "__main__": parser = argparse.ArgumentParser(description="CogVideoX encode/decode demo") parser.add_argument( "--model_path", type=str, required=True, help="The path to the CogVideoX model" ) parser.add_argument("--video_path", type=str, help="The path to the video file (for encoding)") parser.add_argument( "--encoded_path", type=str, help="The path to the encoded tensor file (for decoding)" ) parser.add_argument( "--output_path", type=str, default=".", help="The path to save the output file" ) parser.add_argument( "--mode", type=str, choices=["encode", "decode", "both"], required=True, help="Mode: encode, decode, or both", ) parser.add_argument( "--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')", ) parser.add_argument( "--device", type=str, default="cuda", help="The device to use for computation (e.g., 'cuda' or 'cpu')", ) args = parser.parse_args() device = torch.device(args.device) dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16 if args.mode == "encode": assert args.video_path, "Video path must be provided for encoding." encoded_output = encode_video(args.model_path, args.video_path, dtype, device) torch.save(encoded_output, args.output_path + "/encoded.pt") print( f"Finished encoding the video to a tensor, save it to a file at {encoded_output}/encoded.pt" ) elif args.mode == "decode": assert args.encoded_path, "Encoded tensor path must be provided for decoding." decoded_output = decode_video(args.model_path, args.encoded_path, dtype, device) save_video(decoded_output, args.output_path) print( f"Finished decoding the video and saved it to a file at {args.output_path}/output.mp4" ) elif args.mode == "both": assert args.video_path, "Video path must be provided for encoding." encoded_output = encode_video(args.model_path, args.video_path, dtype, device) torch.save(encoded_output, args.output_path + "/encoded.pt") decoded_output = decode_video( args.model_path, args.output_path + "/encoded.pt", dtype, device ) save_video(decoded_output, args.output_path)