""" This script demonstrates how to generate a video from a text prompt using CogVideoX with quantization. Note: Must install the `torchao`,`torch` library FROM SOURCE to use the quantization feature. Only NVIDIA GPUs like H100 or higher are supported om FP-8 quantization. ALL quantization schemes must use with NVIDIA GPUs. # Run the script: python cli_demo_quantization.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX-2b --quantization_scheme fp8 --dtype float16 python cli_demo_quantization.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX-5b --quantization_scheme fp8 --dtype bfloat16 """ import argparse import os import torch import torch._dynamo from diffusers import ( AutoencoderKLCogVideoX, CogVideoXTransformer3DModel, CogVideoXPipeline, CogVideoXDPMScheduler, ) from diffusers.utils import export_to_video from transformers import T5EncoderModel from torchao.quantization import quantize_, int8_weight_only from torchao.float8.inference import ActivationCasting, QuantConfig, quantize_to_float8 os.environ["TORCH_LOGS"] = "+dynamo,output_code,graph_breaks,recompiles" torch._dynamo.config.suppress_errors = True torch.set_float32_matmul_precision("high") torch._inductor.config.conv_1x1_as_mm = True torch._inductor.config.coordinate_descent_tuning = True torch._inductor.config.epilogue_fusion = False torch._inductor.config.coordinate_descent_check_all_directions = True def quantize_model(part, quantization_scheme): if quantization_scheme == "int8": quantize_(part, int8_weight_only()) elif quantization_scheme == "fp8": quantize_to_float8(part, QuantConfig(ActivationCasting.DYNAMIC)) return part def generate_video( prompt: str, model_path: str, output_path: str = "./output.mp4", num_inference_steps: int = 50, guidance_scale: float = 6.0, num_videos_per_prompt: int = 1, quantization_scheme: str = "fp8", dtype: torch.dtype = torch.bfloat16, num_frames: int = 81, fps: int = 8, seed: int = 42, ): """ Generates a video based on the given prompt and saves it to the specified path. Parameters: - prompt (str): The description of the video to be generated. - model_path (str): The path of the pre-trained model to be used. - output_path (str): The path where the generated video will be saved. - num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality. - guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt. - num_videos_per_prompt (int): Number of videos to generate per prompt. - quantization_scheme (str): The quantization scheme to use ('int8', 'fp8'). - dtype (torch.dtype): The data type for computation (default is torch.bfloat16). """ text_encoder = T5EncoderModel.from_pretrained( model_path, subfolder="text_encoder", torch_dtype=dtype ) text_encoder = quantize_model(part=text_encoder, quantization_scheme=quantization_scheme) transformer = CogVideoXTransformer3DModel.from_pretrained( model_path, subfolder="transformer", torch_dtype=dtype ) transformer = quantize_model(part=transformer, quantization_scheme=quantization_scheme) vae = AutoencoderKLCogVideoX.from_pretrained(model_path, subfolder="vae", torch_dtype=dtype) vae = quantize_model(part=vae, quantization_scheme=quantization_scheme) pipe = CogVideoXPipeline.from_pretrained( model_path, text_encoder=text_encoder, transformer=transformer, vae=vae, torch_dtype=dtype, ) pipe.scheduler = CogVideoXDPMScheduler.from_config( pipe.scheduler.config, timestep_spacing="trailing" ) pipe.enable_model_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() video = pipe( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, num_inference_steps=num_inference_steps, num_frames=num_frames, use_dynamic_cfg=True, guidance_scale=guidance_scale, generator=torch.Generator(device="cuda").manual_seed(seed), ).frames[0] export_to_video(video, output_path, fps=fps) if __name__ == "__main__": parser = argparse.ArgumentParser( description="Generate a video from a text prompt using CogVideoX" ) parser.add_argument( "--prompt", type=str, required=True, help="The description of the video to be generated" ) parser.add_argument( "--model_path", type=str, default="THUDM/CogVideoX-5b", help="Path of the pre-trained model" ) parser.add_argument( "--output_path", type=str, default="./output.mp4", help="Path to save generated video" ) parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps") parser.add_argument( "--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale" ) parser.add_argument( "--num_videos_per_prompt", type=int, default=1, help="Videos to generate per prompt" ) parser.add_argument( "--dtype", type=str, default="bfloat16", help="Data type (e.g., 'float16', 'bfloat16')" ) parser.add_argument( "--quantization_scheme", type=str, default="fp8", choices=["int8", "fp8"], help="Quantization scheme", ) parser.add_argument("--num_frames", type=int, default=81, help="Number of frames in the video") parser.add_argument("--fps", type=int, default=16, help="Frames per second for output video") parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility") args = parser.parse_args() dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16 generate_video( prompt=args.prompt, model_path=args.model_path, output_path=args.output_path, num_inference_steps=args.num_inference_steps, guidance_scale=args.guidance_scale, num_videos_per_prompt=args.num_videos_per_prompt, quantization_scheme=args.quantization_scheme, dtype=dtype, num_frames=args.num_frames, fps=args.fps, seed=args.seed, )