10 Commits

Author SHA1 Message Date
OleehyO
4878edd0cf fix: correct do_validation argument parsing 2025-01-13 12:48:21 +00:00
zR
1534bf33eb add pipeline 2025-01-12 19:27:21 +08:00
OleehyO
e084a4a270 feat: auto-extract first frames as conditioning images for i2v model
When training i2v models without specifying image_column, automatically extract
and use first frames from training videos as conditioning images. This includes:

- Add load_images_from_videos() utility function to extract and cache first frames
- Update BaseI2VDataset to support auto-extraction when image_column is None
- Add validation and warning message in Args schema for i2v without image_column

The first frames are extracted once and cached to avoid repeated video loading.
2025-01-07 06:43:26 +00:00
OleehyO
96e511b413 feat: add warning for fp16 mixed precision training 2025-01-07 06:00:38 +00:00
OleehyO
36427274d6 style: format import statements across finetune module 2025-01-07 05:54:52 +00:00
zR
1789f07256 format and check fp16 for cogvideox2b 2025-01-07 13:16:18 +08:00
OleehyO
de5bef6611 feat(args): add train_resolution validation for video frames and resolution
- Add validation to ensure (frames - 1) is multiple of 8
- Add specific resolution check (480x720) for cogvideox-5b models
- Add error handling for invalid resolution format
2025-01-04 06:16:42 +00:00
OleehyO
a88c1ede69 feat(args): add validation for training resolution
- Add validation check to ensure number of frames is multiple of 8
- Add format validation for train_resolution string (frames x height x width)
2025-01-02 03:12:09 +00:00
OleehyO
26b87cd4ff feat(args): add validation and arg interface for training parameters
- Add field validators for model type and validation settings
- Implement command line argument parsing with argparse
- Add type hints and documentation for training parameters
- Support configuration of model, training, and validation parameters
2025-01-01 15:10:55 +00:00
OleehyO
91d79fd9a4 feat: add schemas module for configuration and state management
Add Pydantic models to handle:
- CLI arguments and configuration (Args)
- Model components and pipeline (Components)
- Training state and parameters (State)
2025-01-01 15:10:54 +00:00