mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-06 03:57:56 +08:00
commit
dcb6795b20
@ -22,6 +22,7 @@ Experience the CogVideoX-5B model online at <a href="https://huggingface.co/spac
|
||||
|
||||
## Project Updates
|
||||
|
||||
- 🔥🔥 **News**: ```2024/9/25```: CogVideoX web demo is available on Replicate. Try the text-to-video model **CogVideoX-5B** here [](https://replicate.com/chenxwh/cogvideox-t2v) and image-to-video model **CogVideoX-5B-I2V** here [](https://replicate.com/chenxwh/cogvideox-i2v).
|
||||
- 🔥🔥 **News**: ```2024/9/19```: We have open-sourced the CogVideoX series image-to-video model **CogVideoX-5B-I2V**.
|
||||
This model can take an image as a background input and generate a video combined with prompt words, offering greater
|
||||
controllability. With this, the CogVideoX series models now support three tasks: text-to-video generation, video
|
||||
|
37
tools/replicate/cog.yaml
Normal file
37
tools/replicate/cog.yaml
Normal file
@ -0,0 +1,37 @@
|
||||
# Configuration for Cog ⚙️
|
||||
# Reference: https://cog.run/yaml
|
||||
|
||||
build:
|
||||
# set to true if your model requires a GPU
|
||||
gpu: true
|
||||
|
||||
# a list of ubuntu apt packages to install
|
||||
system_packages:
|
||||
- "libgl1-mesa-glx"
|
||||
- "libglib2.0-0"
|
||||
|
||||
# python version in the form '3.11' or '3.11.4'
|
||||
python_version: "3.11"
|
||||
|
||||
# a list of packages in the format <package-name>==<version>
|
||||
python_packages:
|
||||
- diffusers>=0.30.3
|
||||
- accelerate>=0.34.2
|
||||
- transformers>=4.44.2
|
||||
- numpy==1.26.0
|
||||
- torch>=2.4.0
|
||||
- torchvision>=0.19.0
|
||||
- sentencepiece>=0.2.0
|
||||
- SwissArmyTransformer>=0.4.12
|
||||
- imageio>=2.35.1
|
||||
- imageio-ffmpeg>=0.5.1
|
||||
- openai>=1.45.0
|
||||
- moviepy>=1.0.3
|
||||
- pillow==9.5.0
|
||||
- pydantic==1.10.7
|
||||
run:
|
||||
- curl -o /usr/local/bin/pget -L "https://github.com/replicate/pget/releases/download/v0.8.2/pget_linux_x86_64" && chmod +x /usr/local/bin/pget
|
||||
|
||||
# predict.py defines how predictions are run on your model
|
||||
predict: "predict_t2v.py:Predictor"
|
||||
# predict: "predict_i2v.py:Predictor"
|
89
tools/replicate/predict_i2v.py
Normal file
89
tools/replicate/predict_i2v.py
Normal file
@ -0,0 +1,89 @@
|
||||
# Prediction interface for Cog ⚙️
|
||||
# https://cog.run/python
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
import torch
|
||||
from diffusers import CogVideoXImageToVideoPipeline
|
||||
from diffusers.utils import export_to_video, load_image
|
||||
from cog import BasePredictor, Input, Path
|
||||
|
||||
|
||||
MODEL_CACHE = "model_cache_i2v"
|
||||
MODEL_URL = (
|
||||
f"https://weights.replicate.delivery/default/THUDM/CogVideo/{MODEL_CACHE}.tar"
|
||||
)
|
||||
os.environ["HF_DATASETS_OFFLINE"] = "1"
|
||||
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
||||
os.environ["HF_HOME"] = MODEL_CACHE
|
||||
os.environ["TORCH_HOME"] = MODEL_CACHE
|
||||
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE
|
||||
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE
|
||||
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE
|
||||
|
||||
|
||||
def download_weights(url, dest):
|
||||
start = time.time()
|
||||
print("downloading url: ", url)
|
||||
print("downloading to: ", dest)
|
||||
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
|
||||
print("downloading took: ", time.time() - start)
|
||||
|
||||
|
||||
class Predictor(BasePredictor):
|
||||
def setup(self) -> None:
|
||||
"""Load the model into memory to make running multiple predictions efficient"""
|
||||
|
||||
if not os.path.exists(MODEL_CACHE):
|
||||
download_weights(MODEL_URL, MODEL_CACHE)
|
||||
|
||||
# model_id: THUDM/CogVideoX-5b-I2V
|
||||
self.pipe = CogVideoXImageToVideoPipeline.from_pretrained(
|
||||
MODEL_CACHE, torch_dtype=torch.bfloat16
|
||||
).to("cuda")
|
||||
|
||||
self.pipe.enable_model_cpu_offload()
|
||||
self.pipe.vae.enable_tiling()
|
||||
|
||||
def predict(
|
||||
self,
|
||||
prompt: str = Input(
|
||||
description="Input prompt", default="Starry sky slowly rotating."
|
||||
),
|
||||
image: Path = Input(description="Input image"),
|
||||
num_inference_steps: int = Input(
|
||||
description="Number of denoising steps", ge=1, le=500, default=50
|
||||
),
|
||||
guidance_scale: float = Input(
|
||||
description="Scale for classifier-free guidance", ge=1, le=20, default=6
|
||||
),
|
||||
num_frames: int = Input(
|
||||
description="Number of frames for the output video", default=49
|
||||
),
|
||||
seed: int = Input(
|
||||
description="Random seed. Leave blank to randomize the seed", default=None
|
||||
),
|
||||
) -> Path:
|
||||
"""Run a single prediction on the model"""
|
||||
|
||||
if seed is None:
|
||||
seed = int.from_bytes(os.urandom(2), "big")
|
||||
print(f"Using seed: {seed}")
|
||||
|
||||
img = load_image(image=str(image))
|
||||
|
||||
video = self.pipe(
|
||||
prompt=prompt,
|
||||
image=img,
|
||||
num_videos_per_prompt=1,
|
||||
num_inference_steps=num_inference_steps,
|
||||
num_frames=num_frames,
|
||||
guidance_scale=guidance_scale,
|
||||
generator=torch.Generator(device="cuda").manual_seed(seed),
|
||||
).frames[0]
|
||||
|
||||
out_path = "/tmp/out.mp4"
|
||||
|
||||
export_to_video(video, out_path, fps=8)
|
||||
return Path(out_path)
|
87
tools/replicate/predict_t2v.py
Normal file
87
tools/replicate/predict_t2v.py
Normal file
@ -0,0 +1,87 @@
|
||||
# Prediction interface for Cog ⚙️
|
||||
# https://cog.run/python
|
||||
|
||||
import os
|
||||
import subprocess
|
||||
import time
|
||||
import torch
|
||||
from diffusers import CogVideoXPipeline
|
||||
from diffusers.utils import export_to_video
|
||||
from cog import BasePredictor, Input, Path
|
||||
|
||||
|
||||
MODEL_CACHE = "model_cache"
|
||||
MODEL_URL = (
|
||||
f"https://weights.replicate.delivery/default/THUDM/CogVideo/{MODEL_CACHE}.tar"
|
||||
)
|
||||
os.environ["HF_DATASETS_OFFLINE"] = "1"
|
||||
os.environ["TRANSFORMERS_OFFLINE"] = "1"
|
||||
os.environ["HF_HOME"] = MODEL_CACHE
|
||||
os.environ["TORCH_HOME"] = MODEL_CACHE
|
||||
os.environ["HF_DATASETS_CACHE"] = MODEL_CACHE
|
||||
os.environ["TRANSFORMERS_CACHE"] = MODEL_CACHE
|
||||
os.environ["HUGGINGFACE_HUB_CACHE"] = MODEL_CACHE
|
||||
|
||||
|
||||
def download_weights(url, dest):
|
||||
start = time.time()
|
||||
print("downloading url: ", url)
|
||||
print("downloading to: ", dest)
|
||||
subprocess.check_call(["pget", "-x", url, dest], close_fds=False)
|
||||
print("downloading took: ", time.time() - start)
|
||||
|
||||
|
||||
class Predictor(BasePredictor):
|
||||
def setup(self) -> None:
|
||||
"""Load the model into memory to make running multiple predictions efficient"""
|
||||
|
||||
if not os.path.exists(MODEL_CACHE):
|
||||
download_weights(MODEL_URL, MODEL_CACHE)
|
||||
|
||||
# model_id: THUDM/CogVideoX-5b
|
||||
self.pipe = CogVideoXPipeline.from_pretrained(
|
||||
MODEL_CACHE,
|
||||
torch_dtype=torch.bfloat16,
|
||||
).to("cuda")
|
||||
|
||||
self.pipe.enable_model_cpu_offload()
|
||||
self.pipe.vae.enable_tiling()
|
||||
|
||||
def predict(
|
||||
self,
|
||||
prompt: str = Input(
|
||||
description="Input prompt",
|
||||
default="A panda, dressed in a small, red jacket and a tiny hat, sits on a wooden stool in a serene bamboo forest. The panda's fluffy paws strum a miniature acoustic guitar, producing soft, melodic tunes. Nearby, a few other pandas gather, watching curiously and some clapping in rhythm. Sunlight filters through the tall bamboo, casting a gentle glow on the scene. The panda's face is expressive, showing concentration and joy as it plays. The background includes a small, flowing stream and vibrant green foliage, enhancing the peaceful and magical atmosphere of this unique musical performance.",
|
||||
),
|
||||
num_inference_steps: int = Input(
|
||||
description="Number of denoising steps", ge=1, le=500, default=50
|
||||
),
|
||||
guidance_scale: float = Input(
|
||||
description="Scale for classifier-free guidance", ge=1, le=20, default=6
|
||||
),
|
||||
num_frames: int = Input(
|
||||
description="Number of frames for the output video", default=49
|
||||
),
|
||||
seed: int = Input(
|
||||
description="Random seed. Leave blank to randomize the seed", default=None
|
||||
),
|
||||
) -> Path:
|
||||
"""Run a single prediction on the model"""
|
||||
|
||||
if seed is None:
|
||||
seed = int.from_bytes(os.urandom(2), "big")
|
||||
print(f"Using seed: {seed}")
|
||||
|
||||
video = self.pipe(
|
||||
prompt=prompt,
|
||||
num_videos_per_prompt=1,
|
||||
num_inference_steps=num_inference_steps,
|
||||
num_frames=num_frames,
|
||||
guidance_scale=guidance_scale,
|
||||
generator=torch.Generator(device="cuda").manual_seed(seed),
|
||||
).frames[0]
|
||||
|
||||
out_path = "/tmp/out.mp4"
|
||||
|
||||
export_to_video(video, out_path, fps=8)
|
||||
return Path(out_path)
|
Loading…
x
Reference in New Issue
Block a user