From c8c7b62aa16135a184b66dc7d1dd4089cfadd4d9 Mon Sep 17 00:00:00 2001 From: zR <2448370773@qq.com> Date: Sat, 9 Nov 2024 22:07:32 +0800 Subject: [PATCH] update diffusers code --- inference/cli_demo.py | 48 +++++++++++++-------------- inference/cli_demo_quantization.py | 53 ++++++++++++------------------ requirements.txt | 10 +++--- 3 files changed, 49 insertions(+), 62 deletions(-) diff --git a/inference/cli_demo.py b/inference/cli_demo.py index 6e1dbf3..6e5ebf5 100644 --- a/inference/cli_demo.py +++ b/inference/cli_demo.py @@ -3,15 +3,15 @@ This script demonstrates how to generate a video using the CogVideoX model with The script supports different types of video generation, including text-to-video (t2v), image-to-video (i2v), and video-to-video (v2v), depending on the input data and different weight. -- text-to-video: THUDM/CogVideoX-5b or THUDM/CogVideoX-2b -- video-to-video: THUDM/CogVideoX-5b or THUDM/CogVideoX-2b -- image-to-video: THUDM/CogVideoX-5b-I2V +- text-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b +- video-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b +- image-to-video: THUDM/CogVideoX-5b-I2V or THUDM/CogVideoX1.5-5b-I2V Running the Script: To run the script, use the following command with appropriate arguments: ```bash -$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX-5b --generate_type "t2v" +$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX1.5-5b --generate_type "t2v" ``` Additional options are available to specify the model path, guidance scale, number of inference steps, video generation type, and output paths. @@ -23,7 +23,6 @@ from typing import Literal import torch from diffusers import ( CogVideoXPipeline, - CogVideoXDDIMScheduler, CogVideoXDPMScheduler, CogVideoXImageToVideoPipeline, CogVideoXVideoToVideoPipeline, @@ -37,6 +36,7 @@ def generate_video( model_path: str, lora_path: str = None, lora_rank: int = 128, + num_frames=81, output_path: str = "./output.mp4", image_or_video_path: str = "", num_inference_steps: int = 50, @@ -45,6 +45,7 @@ def generate_video( dtype: torch.dtype = torch.bfloat16, generate_type: str = Literal["t2v", "i2v", "v2v"], # i2v: image to video, v2v: video to video seed: int = 42, + fps: int = 8, ): """ Generates a video based on the given prompt and saves it to the specified path. @@ -56,11 +57,13 @@ def generate_video( - lora_rank (int): The rank of the LoRA weights. - output_path (str): The path where the generated video will be saved. - num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality. + - num_frames (int): Number of frames to generate. - guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt. - num_videos_per_prompt (int): Number of videos to generate per prompt. - dtype (torch.dtype): The data type for computation (default is torch.bfloat16). - generate_type (str): The type of video generation (e.g., 't2v', 'i2v', 'v2v').· - seed (int): The seed for reproducibility. + - fps (int): The frames per second for the generated video. """ # 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16). @@ -109,11 +112,11 @@ def generate_video( if generate_type == "i2v": video_generate = pipe( prompt=prompt, - image=image, # The path of the image to be used as the background of the video + image=image, # The path of the image, the resolution of video will be the same as the image for CogVideoX1.5-5B-I2V, otherwise it will be 720 * 480 num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt num_inference_steps=num_inference_steps, # Number of inference steps - num_frames=49, # Number of frames to generate,changed to 49 for diffusers version `0.30.3` and after. - use_dynamic_cfg=True, # This id used for DPM Sechduler, for DDIM scheduler, it should be False + num_frames=num_frames, # Number of frames to generate + use_dynamic_cfg=True, # This id used for DPM scheduler, for DDIM scheduler, it should be False guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility ).frames[0] @@ -122,7 +125,7 @@ def generate_video( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, num_inference_steps=num_inference_steps, - num_frames=49, + num_frames=num_frames, use_dynamic_cfg=True, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed), @@ -133,13 +136,12 @@ def generate_video( video=video, # The path of the video to be used as the background of the video num_videos_per_prompt=num_videos_per_prompt, num_inference_steps=num_inference_steps, - # num_frames=49, + num_frames=num_frames, use_dynamic_cfg=True, guidance_scale=guidance_scale, generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility ).frames[0] - # 5. Export the generated frames to a video file. fps must be 8 for original video. - export_to_video(video_generate, output_path, fps=8) + export_to_video(video_generate, output_path, fps=fps) if __name__ == "__main__": @@ -152,24 +154,18 @@ if __name__ == "__main__": help="The path of the image to be used as the background of the video", ) parser.add_argument( - "--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used" + "--model_path", type=str, default="THUDM/CogVideoX-5b", help="Path of the pre-trained model use" ) parser.add_argument("--lora_path", type=str, default=None, help="The path of the LoRA weights to be used") parser.add_argument("--lora_rank", type=int, default=128, help="The rank of the LoRA weights") - parser.add_argument( - "--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved" - ) + parser.add_argument("--output_path", type=str, default="./output.mp4", help="The path save generated video") parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance") - parser.add_argument( - "--num_inference_steps", type=int, default=50, help="Number of steps for the inference process" - ) + parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps") + parser.add_argument("--num_frames", type=int, default=81, help="Number of steps for the inference process") + parser.add_argument("--fps", type=int, default=16, help="Number of steps for the inference process") parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt") - parser.add_argument( - "--generate_type", type=str, default="t2v", help="The type of video generation (e.g., 't2v', 'i2v', 'v2v')" - ) - parser.add_argument( - "--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')" - ) + parser.add_argument("--generate_type", type=str, default="t2v", help="The type of video generation") + parser.add_argument("--dtype", type=str, default="bfloat16", help="The data type for computation") parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility") args = parser.parse_args() @@ -180,6 +176,7 @@ if __name__ == "__main__": lora_path=args.lora_path, lora_rank=args.lora_rank, output_path=args.output_path, + num_frames=args.num_frames, image_or_video_path=args.image_or_video_path, num_inference_steps=args.num_inference_steps, guidance_scale=args.guidance_scale, @@ -187,4 +184,5 @@ if __name__ == "__main__": dtype=dtype, generate_type=args.generate_type, seed=args.seed, + fps=args.fps, ) diff --git a/inference/cli_demo_quantization.py b/inference/cli_demo_quantization.py index b56c9d2..1ea3358 100644 --- a/inference/cli_demo_quantization.py +++ b/inference/cli_demo_quantization.py @@ -3,7 +3,7 @@ This script demonstrates how to generate a video from a text prompt using CogVid Note: -Must install the `torchao`,`torch`,`diffusers`,`accelerate` library FROM SOURCE to use the quantization feature. +Must install the `torchao`,`torch` library FROM SOURCE to use the quantization feature. Only NVIDIA GPUs like H100 or higher are supported om FP-8 quantization. ALL quantization schemes must use with NVIDIA GPUs. @@ -51,6 +51,9 @@ def generate_video( num_videos_per_prompt: int = 1, quantization_scheme: str = "fp8", dtype: torch.dtype = torch.bfloat16, + num_frames: int = 81, + fps: int = 8, + seed: int = 42, ): """ Generates a video based on the given prompt and saves it to the specified path. @@ -65,7 +68,6 @@ def generate_video( - quantization_scheme (str): The quantization scheme to use ('int8', 'fp8'). - dtype (torch.dtype): The data type for computation (default is torch.bfloat16). """ - text_encoder = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder", torch_dtype=dtype) text_encoder = quantize_model(part=text_encoder, quantization_scheme=quantization_scheme) transformer = CogVideoXTransformer3DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype) @@ -80,54 +82,38 @@ def generate_video( torch_dtype=dtype, ) pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") - - # Using with compile will run faster. First time infer will cost ~30min to compile. - # pipe.transformer.to(memory_format=torch.channels_last) - - # for FP8 should remove pipe.enable_model_cpu_offload() pipe.enable_model_cpu_offload() - - # This is not for FP8 and INT8 and should remove this line - # pipe.enable_sequential_cpu_offload() pipe.vae.enable_slicing() pipe.vae.enable_tiling() + video = pipe( prompt=prompt, num_videos_per_prompt=num_videos_per_prompt, num_inference_steps=num_inference_steps, - num_frames=49, + num_frames=num_frames, use_dynamic_cfg=True, guidance_scale=guidance_scale, - generator=torch.Generator(device="cuda").manual_seed(42), + generator=torch.Generator(device="cuda").manual_seed(seed), ).frames[0] - export_to_video(video, output_path, fps=8) + export_to_video(video, output_path, fps=fps) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX") parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated") + parser.add_argument("--model_path", type=str, default="THUDM/CogVideoX-5b", help="Path of the pre-trained model") + parser.add_argument("--output_path", type=str, default="./output.mp4", help="Path to save generated video") + parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps") + parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale") + parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Videos to generate per prompt") + parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type (e.g., 'float16', 'bfloat16')") parser.add_argument( - "--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used" - ) - parser.add_argument( - "--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved" - ) - parser.add_argument( - "--num_inference_steps", type=int, default=50, help="Number of steps for the inference process" - ) - parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance") - parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt") - parser.add_argument( - "--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16', 'bfloat16')" - ) - parser.add_argument( - "--quantization_scheme", - type=str, - default="bf16", - choices=["int8", "fp8"], - help="The quantization scheme to use (int8, fp8)", + "--quantization_scheme", type=str, default="fp8", choices=["int8", "fp8"], help="Quantization scheme" ) + parser.add_argument("--num_frames", type=int, default=81, help="Number of frames in the video") + parser.add_argument("--fps", type=int, default=16, help="Frames per second for output video") + parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility") args = parser.parse_args() dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16 @@ -140,4 +126,7 @@ if __name__ == "__main__": num_videos_per_prompt=args.num_videos_per_prompt, quantization_scheme=args.quantization_scheme, dtype=dtype, + num_frames=args.num_frames, + fps=args.fps, + seed=args.seed, ) diff --git a/requirements.txt b/requirements.txt index bb36b92..3008655 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,14 +1,14 @@ diffusers>=0.31.0 -accelerate>=1.0.1 -transformers>=4.46.1 +accelerate>=1.1.1 +transformers>=4.46.2 numpy==1.26.0 torch>=2.5.0 torchvision>=0.20.0 sentencepiece>=0.2.0 SwissArmyTransformer>=0.4.12 -gradio>=5.4.0 +gradio>=5.5.0 imageio>=2.35.1 imageio-ffmpeg>=0.5.1 -openai>=1.53.0 +openai>=1.54.0 moviepy>=1.0.3 -scikit-video>=1.1.11 +scikit-video>=1.1.11 \ No newline at end of file