mirror of
https://github.com/THUDM/CogVideo.git
synced 2025-04-05 03:04:56 +08:00
update diffusers code
This commit is contained in:
parent
a8205b575d
commit
c8c7b62aa1
@ -3,15 +3,15 @@ This script demonstrates how to generate a video using the CogVideoX model with
|
||||
The script supports different types of video generation, including text-to-video (t2v), image-to-video (i2v),
|
||||
and video-to-video (v2v), depending on the input data and different weight.
|
||||
|
||||
- text-to-video: THUDM/CogVideoX-5b or THUDM/CogVideoX-2b
|
||||
- video-to-video: THUDM/CogVideoX-5b or THUDM/CogVideoX-2b
|
||||
- image-to-video: THUDM/CogVideoX-5b-I2V
|
||||
- text-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
|
||||
- video-to-video: THUDM/CogVideoX-5b, THUDM/CogVideoX-2b or THUDM/CogVideoX1.5-5b
|
||||
- image-to-video: THUDM/CogVideoX-5b-I2V or THUDM/CogVideoX1.5-5b-I2V
|
||||
|
||||
Running the Script:
|
||||
To run the script, use the following command with appropriate arguments:
|
||||
|
||||
```bash
|
||||
$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX-5b --generate_type "t2v"
|
||||
$ python cli_demo.py --prompt "A girl riding a bike." --model_path THUDM/CogVideoX1.5-5b --generate_type "t2v"
|
||||
```
|
||||
|
||||
Additional options are available to specify the model path, guidance scale, number of inference steps, video generation type, and output paths.
|
||||
@ -23,7 +23,6 @@ from typing import Literal
|
||||
import torch
|
||||
from diffusers import (
|
||||
CogVideoXPipeline,
|
||||
CogVideoXDDIMScheduler,
|
||||
CogVideoXDPMScheduler,
|
||||
CogVideoXImageToVideoPipeline,
|
||||
CogVideoXVideoToVideoPipeline,
|
||||
@ -37,6 +36,7 @@ def generate_video(
|
||||
model_path: str,
|
||||
lora_path: str = None,
|
||||
lora_rank: int = 128,
|
||||
num_frames=81,
|
||||
output_path: str = "./output.mp4",
|
||||
image_or_video_path: str = "",
|
||||
num_inference_steps: int = 50,
|
||||
@ -45,6 +45,7 @@ def generate_video(
|
||||
dtype: torch.dtype = torch.bfloat16,
|
||||
generate_type: str = Literal["t2v", "i2v", "v2v"], # i2v: image to video, v2v: video to video
|
||||
seed: int = 42,
|
||||
fps: int = 8,
|
||||
):
|
||||
"""
|
||||
Generates a video based on the given prompt and saves it to the specified path.
|
||||
@ -56,11 +57,13 @@ def generate_video(
|
||||
- lora_rank (int): The rank of the LoRA weights.
|
||||
- output_path (str): The path where the generated video will be saved.
|
||||
- num_inference_steps (int): Number of steps for the inference process. More steps can result in better quality.
|
||||
- num_frames (int): Number of frames to generate.
|
||||
- guidance_scale (float): The scale for classifier-free guidance. Higher values can lead to better alignment with the prompt.
|
||||
- num_videos_per_prompt (int): Number of videos to generate per prompt.
|
||||
- dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
|
||||
- generate_type (str): The type of video generation (e.g., 't2v', 'i2v', 'v2v').·
|
||||
- seed (int): The seed for reproducibility.
|
||||
- fps (int): The frames per second for the generated video.
|
||||
"""
|
||||
|
||||
# 1. Load the pre-trained CogVideoX pipeline with the specified precision (bfloat16).
|
||||
@ -109,11 +112,11 @@ def generate_video(
|
||||
if generate_type == "i2v":
|
||||
video_generate = pipe(
|
||||
prompt=prompt,
|
||||
image=image, # The path of the image to be used as the background of the video
|
||||
image=image, # The path of the image, the resolution of video will be the same as the image for CogVideoX1.5-5B-I2V, otherwise it will be 720 * 480
|
||||
num_videos_per_prompt=num_videos_per_prompt, # Number of videos to generate per prompt
|
||||
num_inference_steps=num_inference_steps, # Number of inference steps
|
||||
num_frames=49, # Number of frames to generate,changed to 49 for diffusers version `0.30.3` and after.
|
||||
use_dynamic_cfg=True, # This id used for DPM Sechduler, for DDIM scheduler, it should be False
|
||||
num_frames=num_frames, # Number of frames to generate
|
||||
use_dynamic_cfg=True, # This id used for DPM scheduler, for DDIM scheduler, it should be False
|
||||
guidance_scale=guidance_scale,
|
||||
generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility
|
||||
).frames[0]
|
||||
@ -122,7 +125,7 @@ def generate_video(
|
||||
prompt=prompt,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
num_inference_steps=num_inference_steps,
|
||||
num_frames=49,
|
||||
num_frames=num_frames,
|
||||
use_dynamic_cfg=True,
|
||||
guidance_scale=guidance_scale,
|
||||
generator=torch.Generator().manual_seed(seed),
|
||||
@ -133,13 +136,12 @@ def generate_video(
|
||||
video=video, # The path of the video to be used as the background of the video
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
num_inference_steps=num_inference_steps,
|
||||
# num_frames=49,
|
||||
num_frames=num_frames,
|
||||
use_dynamic_cfg=True,
|
||||
guidance_scale=guidance_scale,
|
||||
generator=torch.Generator().manual_seed(seed), # Set the seed for reproducibility
|
||||
).frames[0]
|
||||
# 5. Export the generated frames to a video file. fps must be 8 for original video.
|
||||
export_to_video(video_generate, output_path, fps=8)
|
||||
export_to_video(video_generate, output_path, fps=fps)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
@ -152,24 +154,18 @@ if __name__ == "__main__":
|
||||
help="The path of the image to be used as the background of the video",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
|
||||
"--model_path", type=str, default="THUDM/CogVideoX-5b", help="Path of the pre-trained model use"
|
||||
)
|
||||
parser.add_argument("--lora_path", type=str, default=None, help="The path of the LoRA weights to be used")
|
||||
parser.add_argument("--lora_rank", type=int, default=128, help="The rank of the LoRA weights")
|
||||
parser.add_argument(
|
||||
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
|
||||
)
|
||||
parser.add_argument("--output_path", type=str, default="./output.mp4", help="The path save generated video")
|
||||
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
|
||||
parser.add_argument(
|
||||
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
|
||||
)
|
||||
parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
|
||||
parser.add_argument("--num_frames", type=int, default=81, help="Number of steps for the inference process")
|
||||
parser.add_argument("--fps", type=int, default=16, help="Number of steps for the inference process")
|
||||
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
|
||||
parser.add_argument(
|
||||
"--generate_type", type=str, default="t2v", help="The type of video generation (e.g., 't2v', 'i2v', 'v2v')"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16' or 'bfloat16')"
|
||||
)
|
||||
parser.add_argument("--generate_type", type=str, default="t2v", help="The type of video generation")
|
||||
parser.add_argument("--dtype", type=str, default="bfloat16", help="The data type for computation")
|
||||
parser.add_argument("--seed", type=int, default=42, help="The seed for reproducibility")
|
||||
|
||||
args = parser.parse_args()
|
||||
@ -180,6 +176,7 @@ if __name__ == "__main__":
|
||||
lora_path=args.lora_path,
|
||||
lora_rank=args.lora_rank,
|
||||
output_path=args.output_path,
|
||||
num_frames=args.num_frames,
|
||||
image_or_video_path=args.image_or_video_path,
|
||||
num_inference_steps=args.num_inference_steps,
|
||||
guidance_scale=args.guidance_scale,
|
||||
@ -187,4 +184,5 @@ if __name__ == "__main__":
|
||||
dtype=dtype,
|
||||
generate_type=args.generate_type,
|
||||
seed=args.seed,
|
||||
fps=args.fps,
|
||||
)
|
||||
|
@ -3,7 +3,7 @@ This script demonstrates how to generate a video from a text prompt using CogVid
|
||||
|
||||
Note:
|
||||
|
||||
Must install the `torchao`,`torch`,`diffusers`,`accelerate` library FROM SOURCE to use the quantization feature.
|
||||
Must install the `torchao`,`torch` library FROM SOURCE to use the quantization feature.
|
||||
Only NVIDIA GPUs like H100 or higher are supported om FP-8 quantization.
|
||||
|
||||
ALL quantization schemes must use with NVIDIA GPUs.
|
||||
@ -51,6 +51,9 @@ def generate_video(
|
||||
num_videos_per_prompt: int = 1,
|
||||
quantization_scheme: str = "fp8",
|
||||
dtype: torch.dtype = torch.bfloat16,
|
||||
num_frames: int = 81,
|
||||
fps: int = 8,
|
||||
seed: int = 42,
|
||||
):
|
||||
"""
|
||||
Generates a video based on the given prompt and saves it to the specified path.
|
||||
@ -65,7 +68,6 @@ def generate_video(
|
||||
- quantization_scheme (str): The quantization scheme to use ('int8', 'fp8').
|
||||
- dtype (torch.dtype): The data type for computation (default is torch.bfloat16).
|
||||
"""
|
||||
|
||||
text_encoder = T5EncoderModel.from_pretrained(model_path, subfolder="text_encoder", torch_dtype=dtype)
|
||||
text_encoder = quantize_model(part=text_encoder, quantization_scheme=quantization_scheme)
|
||||
transformer = CogVideoXTransformer3DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype)
|
||||
@ -80,54 +82,38 @@ def generate_video(
|
||||
torch_dtype=dtype,
|
||||
)
|
||||
pipe.scheduler = CogVideoXDPMScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing")
|
||||
|
||||
# Using with compile will run faster. First time infer will cost ~30min to compile.
|
||||
# pipe.transformer.to(memory_format=torch.channels_last)
|
||||
|
||||
# for FP8 should remove pipe.enable_model_cpu_offload()
|
||||
pipe.enable_model_cpu_offload()
|
||||
|
||||
# This is not for FP8 and INT8 and should remove this line
|
||||
# pipe.enable_sequential_cpu_offload()
|
||||
pipe.vae.enable_slicing()
|
||||
pipe.vae.enable_tiling()
|
||||
|
||||
video = pipe(
|
||||
prompt=prompt,
|
||||
num_videos_per_prompt=num_videos_per_prompt,
|
||||
num_inference_steps=num_inference_steps,
|
||||
num_frames=49,
|
||||
num_frames=num_frames,
|
||||
use_dynamic_cfg=True,
|
||||
guidance_scale=guidance_scale,
|
||||
generator=torch.Generator(device="cuda").manual_seed(42),
|
||||
generator=torch.Generator(device="cuda").manual_seed(seed),
|
||||
).frames[0]
|
||||
|
||||
export_to_video(video, output_path, fps=8)
|
||||
export_to_video(video, output_path, fps=fps)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser(description="Generate a video from a text prompt using CogVideoX")
|
||||
parser.add_argument("--prompt", type=str, required=True, help="The description of the video to be generated")
|
||||
parser.add_argument("--model_path", type=str, default="THUDM/CogVideoX-5b", help="Path of the pre-trained model")
|
||||
parser.add_argument("--output_path", type=str, default="./output.mp4", help="Path to save generated video")
|
||||
parser.add_argument("--num_inference_steps", type=int, default=50, help="Inference steps")
|
||||
parser.add_argument("--guidance_scale", type=float, default=6.0, help="Classifier-free guidance scale")
|
||||
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Videos to generate per prompt")
|
||||
parser.add_argument("--dtype", type=str, default="bfloat16", help="Data type (e.g., 'float16', 'bfloat16')")
|
||||
parser.add_argument(
|
||||
"--model_path", type=str, default="THUDM/CogVideoX-5b", help="The path of the pre-trained model to be used"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--output_path", type=str, default="./output.mp4", help="The path where the generated video will be saved"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--num_inference_steps", type=int, default=50, help="Number of steps for the inference process"
|
||||
)
|
||||
parser.add_argument("--guidance_scale", type=float, default=6.0, help="The scale for classifier-free guidance")
|
||||
parser.add_argument("--num_videos_per_prompt", type=int, default=1, help="Number of videos to generate per prompt")
|
||||
parser.add_argument(
|
||||
"--dtype", type=str, default="bfloat16", help="The data type for computation (e.g., 'float16', 'bfloat16')"
|
||||
)
|
||||
parser.add_argument(
|
||||
"--quantization_scheme",
|
||||
type=str,
|
||||
default="bf16",
|
||||
choices=["int8", "fp8"],
|
||||
help="The quantization scheme to use (int8, fp8)",
|
||||
"--quantization_scheme", type=str, default="fp8", choices=["int8", "fp8"], help="Quantization scheme"
|
||||
)
|
||||
parser.add_argument("--num_frames", type=int, default=81, help="Number of frames in the video")
|
||||
parser.add_argument("--fps", type=int, default=16, help="Frames per second for output video")
|
||||
parser.add_argument("--seed", type=int, default=42, help="Random seed for reproducibility")
|
||||
|
||||
args = parser.parse_args()
|
||||
dtype = torch.float16 if args.dtype == "float16" else torch.bfloat16
|
||||
@ -140,4 +126,7 @@ if __name__ == "__main__":
|
||||
num_videos_per_prompt=args.num_videos_per_prompt,
|
||||
quantization_scheme=args.quantization_scheme,
|
||||
dtype=dtype,
|
||||
num_frames=args.num_frames,
|
||||
fps=args.fps,
|
||||
seed=args.seed,
|
||||
)
|
||||
|
@ -1,14 +1,14 @@
|
||||
diffusers>=0.31.0
|
||||
accelerate>=1.0.1
|
||||
transformers>=4.46.1
|
||||
accelerate>=1.1.1
|
||||
transformers>=4.46.2
|
||||
numpy==1.26.0
|
||||
torch>=2.5.0
|
||||
torchvision>=0.20.0
|
||||
sentencepiece>=0.2.0
|
||||
SwissArmyTransformer>=0.4.12
|
||||
gradio>=5.4.0
|
||||
gradio>=5.5.0
|
||||
imageio>=2.35.1
|
||||
imageio-ffmpeg>=0.5.1
|
||||
openai>=1.53.0
|
||||
openai>=1.54.0
|
||||
moviepy>=1.0.3
|
||||
scikit-video>=1.1.11
|
||||
scikit-video>=1.1.11
|
Loading…
x
Reference in New Issue
Block a user